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Abstract

In this thesis we study the theory of CW-complexes in a synthetic way. We first
introduced some important concepts of Homotopy Type Theory and used them to
define cell complexes as a homotopical pushout. After that, we have proven some
topological properties of CW-complexes and calculated the homotopy groups of
some examples with methods in type theory.

Zusammenfassung

Wir untersuchen in dieser Arbeit die Theorie der CW-Komplexe synthetisch. Als
Vorbereitung haben wir die Grundbegriffe in Homotopietyptheorie eingeführt.
Danach werden die CW-Komplexe formal als Homotopiefaserprodukte definiert und
mit Hilfe der Typtheorie haben wir einige topologischen Eigenschaften von CW-
Komplexen bewiesen und die Homotopiegruppen berechnet.
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1 Introduction
Homotopy type theory(HoTT) is a relatively new branch of mathematics that aims to build
an alternative theory for constructing and reasoning. It has a deep connection with the long
existing intuitionistic logic, among them the important one is Martin-Löf type theory, which
uses types instead of sets as a basis for mathematical objects. The type theory has a very nice
property: Almost everything stays computable and thus can be verified by a computer. For a
detailed introduction of Martin-Löf type theory, see [Mar84].
One can date the birth of Homotopy type theory back to the discovery of homotopical inter-
pretation of the dependent types [AW09] and the univalence axiom [Voe10] around 10 years
ago. HoTT provides a new geometric interpretation of equalities in classical type theory, which
is generated by a single constructor refl : 𝑎 = 𝑎 but contains rich structures. By understanding
all higher identities as a groupoid, this phenomenon was justified. We will cover this interpre-
tation and the equivalence of types in Chapter 2.
Another highlight of HoTT is the higher inductive types. They allow us to define relations
in inductive types. This widens the expressing ability dramatically. For example, we can now
easily define the space 𝕊𝑛 or even suspensions of a space. However, we shall note that finding
a general syntax of higher inductive types is still a open problem in HoTT [LS20]. We will con-
struct some useful higher inductive types in Chapter 3 as examples.
Soon after the univalence axiom was proposed, Voevodsky constructed a model in which types
are interpreted as Kan simplical sets and the consistency of the univalence axiom in this model
was confirmed [KL21]. It showed the potential of HoTT being a new mathematical foundation,
and this foundation is at least as strong as the set theory with two inaccessible large cardinals.
After the IAS special year of univalent foundations 2012-2013, a famous textbook of HoTT
[Uni13] was written by over 50 collaborators. We will use this book as the main reference of
Chapters 2 and 3.
HoTT shows its advantages in many mathematical fields. One of them is naturally the homo-
topy theory. By homotopy hypothesis [Gro21], (∞)-groupoids are (weak) homotopy equivalent
to the simplical localization of topological spaces. Together with the homotopical view of types
as (∞)-groupoids, we build an intrinsic homotopy theory upon HoTT that is independent of
any realization of topological space.
We will take advantage of this in Chapter 4 and calculate some homotopy groups of a CW-
complex, which serves a good start point in algebraic topology. We hope this gives the reader
some ideas of how doing mathematics in HoTT looks like and how simple it actually is.
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2 Type Theory

2.1 Homotopical view of equalities
Let 𝑋 be a topological space and 𝑎, 𝑏 ∈ 𝑋 be two points. There are paths 𝜑, 𝜓 : 𝐼 → 𝑋 with start
point 𝑎 and end point 𝑏. We can define a homotopy 𝐻 : 𝐼 → 𝐼 → 𝑋 between 𝜑 and 𝜓. This can
be understood as a “path over paths”, we call this a 2-path. Therefore we get an analogous
definition of 3-paths, namely homotopies between homotopies and so on.
In the category of topological spaces with homotopy classes as morphisms, namely the HoTop,
we can thus identify two paths via the homotopies between them. This can be generalized to
any higher homotopy. In this sense, 𝑘-paths serve possibly as 𝑘-equivalences between 𝑘 − 1
-paths.
To make this precise however, we need to choose our model carefully. Now let us give up con-
structing certain topological spaces and turn the attention to type theory.
In type theory there is an induction principle of the identity type, which says suppose we want
to define a dependent function 𝑓 : ∏𝑥,𝑦:𝐴 ∏𝑝:𝑥=𝑦 𝑃(𝑥, 𝑦, 𝑝) for 𝑃 : ∏𝑥,𝑦:𝐴(𝑥 = 𝑦) → 𝒰 a type
family, it suffices to have a function 𝑐 : ∏𝑥:𝐴 𝑃(𝑥, 𝑥, refl𝑥) and let 𝑓(𝑥, 𝑥, refl𝑥) ≔ 𝑐(𝑥).
With this axiomatic approach we can prove the symmtery and transitivity of identity types.
Moreover, we know that there is a nice model satisfying this axiom, the Martin-Löf identity
type with formation rule refl : ∏𝑥:𝐴(𝑥 = 𝑥).
Now let 𝐴 : 𝒰 be a type in a (large enough) universe. An identity type 𝑎 = 𝑏 with 𝑎, 𝑏 : 𝐴 con-
tains witnesses that two elements are equal, or indistinguishable. We now interpret a witness
as a path between 𝑎 and 𝑏, thus refl𝑎 : 𝑎 = 𝑎 is a constant path in 𝑎. Inductively the identity
type 𝑝 = 𝑞 where 𝑝, 𝑞 : 𝑎 = 𝑏, freely generated by refl𝑝 : 𝑝 = 𝑝 collects naturally all homotopies
between paths from 𝑎 to 𝑏 and so on.
Actually we can also define path operations(eg. concatenation and reverse) via the induction
principle of identity types.

Proposition 2.1.1 For a type 𝐴 and 𝑥, 𝑦, 𝑧 : 𝐴, we have
1. a function inv : (𝑥 = 𝑦) → (𝑦 = 𝑥) which sends 𝑝 to 𝑝−1 the inverse of a path.
2. a function (⋅) : (𝑥 = 𝑦) → (𝑦 = 𝑧) → (𝑥 = 𝑧) called the composition or concatenation of

paths.

Proof. We define a type family 𝐷 : ∏𝑥,𝑦:𝐴(𝑥 = 𝑦) → 𝒰 by 𝐷(𝑥, 𝑦, 𝑝) ≔ (𝑦 = 𝑥) and we have a
map 𝑐 : ∏𝑥:𝐴 𝐷(𝑥, 𝑥, refl𝑥) by 𝑐(𝑥) = refl𝑥. Following the induction principle, we get a function
𝑓 : ∏𝑥,𝑦:𝐴 ∏𝑝:𝑥=𝑦(𝑦 = 𝑥) and 𝑓(𝑥, 𝑥, refl𝑥) ≔ refl𝑥. We set inv(𝑝) ≔ 𝑓(𝑥, 𝑦, 𝑝). In other words,
refl−1

𝑥 ≔ refl𝑥.
Similarly by induction it suffices to give refl𝑥 ⋅ refl𝑥, which is of course refl𝑥. ∎
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We have the following properties of composition, which are also proven easily via induction:

Proposition 2.1.2 For a type 𝐴 and 𝑥, 𝑦, 𝑧, 𝑤 : 𝐴, let 𝑝 : 𝑥 = 𝑦, 𝑞 : 𝑦 = 𝑧, 𝑟 : 𝑧 = 𝑤 be paths. Then
we have:
1. ru𝑝 : 𝑝 = 𝑝 ⋅ refl𝑦 and lu𝑝 : 𝑝 = refl𝑥 ⋅ 𝑝.
2. 𝑝−1 ⋅ 𝑝 = refl𝑦 and 𝑝 ⋅ 𝑝−1 = refl𝑥.
3. (𝑝−1)−1 = 𝑝.
4. 𝑝 ⋅ (𝑞 ⋅ 𝑟) = (𝑝 ⋅ 𝑞) ⋅ 𝑟.

Proof. By path induction we assume 𝑦, 𝑧 ≔ 𝑥 and 𝑝, 𝑞, 𝑟 ≔ refl𝑥. Then refl𝑥 = refl𝑥 ⋅ refl𝑥 is in-
habited with reflrefl𝑥  by Proposition 2.1.1. And refl−1

𝑥 ⋅ refl𝑥 = refl𝑥 since refl−1
𝑥 = refl𝑥. Of course

(refl−1
𝑥 )−1 = refl𝑥. And finally, refl𝑥 ⋅ (refl𝑥 ⋅ refl𝑥) = (refl𝑥 ⋅ refl𝑥) ⋅ refl𝑥 is inhabited by reflrefl𝑥 .∎

This justifies our intuition of equalities as paths. And the Martin-Löf identity type will now be
enriched by the path operations defined above.
Moreover, the functions between types can be regarded as functors acting on paths as mor-
phisms. And we have following properties:

Lemma 2.1.3 (Application) Suppose 𝑓 : 𝐴 → 𝐵 a function, then for 𝑥, 𝑦 : 𝐴 we have a function
on paths:

ap𝑓 : (𝑥 = 𝑦) → (𝑓(𝑥) = 𝑓(𝑦)) (2.1.1)

Proof. By induction on 𝑝 : 𝑥 = 𝑦, it suffices to assume 𝑦 ≔ 𝑥 and 𝑝 = refl𝑥. In this case we define
ap𝑓(refl𝑥) ≔ refl𝑓(𝑥). ∎
The notation ap𝑓  can be considered as the application of 𝑓  to a path. Ambiguously we also write
𝑓(𝑝). We note that ap𝑓  behaves homomorphically with concatenations, this is easy to calculate.

Proposition 2.1.4 Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be two maps. Let 𝑥, 𝑦, 𝑧 : 𝐴 and 𝑝 : 𝑥 = 𝑦 and
𝑞 : 𝑦 = 𝑧 be paths. Then we have
1. ap𝑓(𝑝 ⋅ 𝑞) = ap𝑓(𝑝) ⋅ ap𝑓(𝑞)
2. ap𝑓(𝑝−1) = ap𝑓(𝑝)−1

3. ap𝑔(ap𝑓(𝑝)) = ap𝑔∘𝑓(𝑝)
4. apid𝐴

(𝑝) = 𝑝

Lemma 2.1.5 (Transport) Let 𝑃 : 𝐴 → 𝒰 be a type family and 𝑝 : 𝑎 = 𝑏 a path of 𝐴, then 𝑝
induces a function 𝑝∗ : 𝑃 (𝑎) → 𝑃(𝑏), and this defines a function transport𝑃 (𝑝, −) ≔ (𝑝)∗

Proof. By induction on 𝑝, it suffices to consider the case 𝑏 ≔ 𝑎 and 𝑝 = refl𝑎, then we define
(refl𝑎)∗ ≔ id𝑃(𝑎). ∎
Topologically, the transport functor expresses a “path lifting” property.
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A useful view of 𝑃 : 𝐴 → 𝒰 is seeing it as a fibration over 𝐴 with the total space ∑𝑎:𝐴 𝑃(𝑎).
A dependent function 𝑓 : ∏𝑎:𝐴 𝑃(𝑎) is thus a section of 𝑃 . The dependent version of Lemma
2.1.3 expresses the idea that we can compare the elements in a section along the transport.

Lemma 2.1.6 (Dependent map) Let 𝑓 : ∏(𝑥:𝐴) 𝑃(𝑥) a dependent function, then we have a map

apd𝑓 : ∏
𝑝:𝑥=𝑦

𝑝∗(𝑓(𝑥)) = 𝑓(𝑦) (2.1.2)

Proof. By induction we assume 𝑦 ≔ 𝑥 and 𝑝 ≔ refl𝑥. In this case (refl𝑥)∗(𝑓(𝑥)) = id(𝑓(𝑥)) = 𝑓(𝑥)
is always inhabited by refl𝑓(𝑥). ∎
We now give an important definition, which we will encounter repeatedly later.

Definition 2.1.7 A pointed type (𝐴, 𝑎) is a type 𝐴 : 𝒰 and a point 𝑎 : 𝐴, the base point. Denote
by 𝒰● ≔ ∑(𝐴:𝒰) 𝐴 the type of all pointed types in a universe 𝒰.

Definition 2.1.8 For a pointed type (𝐴, 𝑎), the loop space of (𝐴, 𝑎) is the pointed type Ω(𝐴, 𝑎) =
((𝑎 = 𝑎), refl𝑎), also means Ω is a pointed function. we define the 𝑛-th loop space Ω𝑛(𝐴, 𝑎) of
(𝐴, 𝑎) recursively:

Ω0(𝐴, 𝑎) = (𝐴, 𝑎)

Ω𝑛+1(𝐴, 𝑎) = Ω𝑛(Ω(𝐴, 𝑎))
(2.1.3)

2.2 Quasi-inverses and bi-invertible maps
In classical logic we have already an equivalence of propositions. This is also true in type the-
ory.

Definition 2.2.1 Two types 𝐴 and 𝐵 are said to be logically equivalent if there exist maps 𝑓 :
𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴.

There are many ways to define the equivalence between types. The first intuition is borrowed
from category theory:

Definition 2.2.2 A homotopy between two functions 𝑓, 𝑔 : 𝐴 → 𝐵 is a witness of the type

𝑓 ∼ 𝑔 ≔ ∏
𝑥:𝐴

(𝑓(𝑥) = 𝑔(𝑥)) (2.2.1)

Definition 2.2.3 Let 𝑓 : 𝐴 → 𝐵 be a map, we say that 𝑓  is a quasi-inverse if there exists 𝑔 :
𝐵 → 𝐴 such that 𝑓 ∘ 𝑔 ∼ id𝐵 and 𝑔 ∘ 𝑓 ∼ id𝐴. In this sense we define a type
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qinv(𝑓) ≔ ∑
𝑔:𝐵→𝐴

(𝑔 ∘ 𝑓 ∼ id𝐴) × (𝑓 ∘ 𝑔 ∼ id𝐵) (2.2.2)

The type qinv(𝑓) actually has more structure than only “true or false” judgement, this is not
what we want since now the equivalence would not be unique.

Definition 2.2.4 A type 𝐴 is said to be a mere proposition if ∀𝑎, 𝑏 : 𝐴, 𝑎 = 𝑏.

Theorem 2.2.5 The type qinv(𝑓) is not a mere proposition.

Sketch of proof. We prove firstly an equivalence between qinv(𝑔) and ∏𝑥:𝑋(𝑥 = 𝑥) where 𝑔 :
𝑋 → 𝑌  if qinv(𝑔) is inhabited. Then it suffices to construct a dependent function 𝑓 : ∏𝑥:𝑋(𝑥 =
𝑥) which is not equal to id𝑋 that sends 𝑥 to refl𝑥. Then it shows ∏𝑥:𝑋(𝑥 = 𝑥) is not a mere
proposition.
We choose 𝑋 ≔ ∑𝐴:𝒰|2 = 𝐴| and 𝑎 ≔ (2, |refl2|) : 𝑋, where | ⋅ | is the (−1)-truncation that is
defined in Section 3.4. Then we will have a non-trivial path 𝑝 : 𝑎 = 𝑎 corresponding to the
equivalence 2 ≃ 2 which sends 02 to 12 and 12 to 02. By induction on the type ∏𝑥:𝑋(𝑥 = 𝑥),
we can construct a function 𝑓 : ∏𝑥:𝑋(𝑥 = 𝑥) with 𝑓(𝑎) = 𝑝. But 𝑝 ≠ refl𝑎, thus 𝑓 ≠ id𝑋, which
completes the proof.
See Theorem 4.1.3 of [Uni13]. for a detailed proof of the equivalence and the induction princi-
ple. ∎
We now define a better way to demonstrate the equivalence, which is a mere proposition and
show it is logically equivalent to qinv(𝑓). This is done by adding a new datum in the definition
of quasi inverses.

Definition 2.2.6 Let 𝑓 : 𝐴 → 𝐵 be a map. We define types

linv(𝑓) ≔ ∑
𝑔:𝐵→𝐴

(𝑔 ∘ 𝑓 ∼ id𝐴)

rinv(𝑓) ≔ ∑
𝑔:𝐵→𝐴

(𝑓 ∘ 𝑔 ∼ id𝐵)

biinv(𝑓) ≔ linv(𝑓) × rinv(𝑓)

(2.2.3)

We say 𝑓  is bi-invertible if it has both left inverse and right inverse.

Theorem 2.2.7 For any 𝑓 : 𝐴 → 𝐵 qinv(𝑓) and biinv(𝑓) are logically equivalent.

Proof. Suppose we have (𝑔, 𝛼, 𝛽) a quasi-inverse for 𝑓 , then we have of course a bi-invertible
map (𝑔, 𝛼, 𝑔, 𝛽). Conversely if we have (𝑔, 𝛼, ℎ, 𝛽), we have a composition of homotopy
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𝛾 : ℎ ∼𝛼 𝑔 ∘ 𝑓 ∘ ℎ ∼
𝛽

𝑔

𝛾(𝑦) = 𝛼(ℎ(𝑦))−1 ⋅ 𝑔(𝛽(𝑦))
(2.2.4)

Now define 𝛼′ : ℎ ∘ 𝑓 ∼ id𝐴 by 𝛼′(𝑥) = 𝛾(𝑓(𝑥)) ∘ 𝛼(𝑥) and (ℎ, 𝛼′, 𝛽) is a quasi-inverse. ∎

Theorem 2.2.8 For any 𝑓 : 𝐴 → 𝐵, biinv(𝑓) is a mere proposition.

Before proving this theorem, we need some helpful definitions and lemmas.

Definition 2.2.9 A type 𝐴 is said to be contractible if there exists 𝑎 : 𝐴 such that ∀𝑏 : 𝐴, 𝑎 = 𝑏.
Such an 𝑎 : 𝐴 is called the contractible center of 𝐴.

If a type is contractible, then it is a mere proposition. As we can always find paths between
points via concatenation of their paths connecting to the contractible center. Conversely, a mere
proposition is contractible if and only if it is inhabited.

Definition 2.2.10 A map 𝑓 : 𝐴 → 𝐵 is said to be a half adjoint equivalence if there is 𝑔 : 𝐵 →
𝐴 with 𝜂 : 𝑔 ∘ 𝑓 ∼ id𝐴 and 𝜀 : 𝑓 ∘ 𝑔 ∼ id𝐵 such that 𝜏 : ∏𝑥:𝐴 𝑓(𝜂𝑥) = 𝜀(𝑓𝑥). We then have a type

ishae(𝑓) ≔ ∑
𝑔:𝐵→𝐴

∑
𝜂:𝑔∘𝑓∼id𝐴

∑
𝜀:𝑓∘𝑔∼id𝐵

∏
𝑥:𝐴

(𝑓(𝜂𝑥) = 𝜀(𝑓𝑥)) (2.2.5)

Theorem 2.2.11 For any 𝑓 : 𝐴 → 𝐵 ishae(𝑓) and qinv(𝑓) are logically equivalent.

Proof. We have ishae(𝑓) → qinv(𝑓) simply by forget the coherence datum 𝜏 . For the other di-
rection, we have (𝑔, 𝜂, 𝜀) a quasi-inverse and construct (𝑔, 𝜂, 𝜀′, 𝜏). We define 𝜀′(𝑏) to be the
composition 𝜀(𝑓(𝑔(𝑏)))−1 ⋅ (𝑓(𝜂(𝑔(𝑏)))) ⋅ 𝜀(𝑏). By naturality of 𝜂, we have

𝑓(𝜂(𝑔(𝑓(𝑎)))) ⋅ 𝜀(𝑓(𝑎)) = 𝑓(𝑔(𝑓(𝜂(𝑎)))) ⋅ 𝜀(𝑓(𝑎)) = 𝜀(𝑓(𝑔(𝑓(𝑎)))) ⋅ 𝑓(𝜂(𝑎)) (2.2.6)

Concatenate 𝜀(𝑓(𝑔(𝑓(𝑎))))−1 from both side and we get the homotopy 𝜏(𝑎). ∎
Thus biinv(𝑓) and ishae(𝑓) are also logically equivalent.
The definition of half adjoint equivalence reminds us of the adjoint equivalence in category
theory. We also have the following familiar geometric concept.

Definition 2.2.12 The fiber of a map 𝑓 : 𝐴 → 𝐵 over a point 𝑦 : 𝐵 is

fib𝑓(𝑦) ≔ ∑
𝑥:𝐴

(𝑓(𝑥) = 𝑦) (2.2.7)

Lemma 2.2.13 Suppose 𝑓 : 𝐴 → 𝐵 is a half adjoint equivalence, then for any 𝑦 : 𝐵, the fiber
fib𝑓(𝑦) is contractible.
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Proof. Let (𝑔, 𝜂, 𝜀, 𝜏) : ishae(𝑓). We choose (𝑔(𝑦), 𝜀𝑦) to be our contraction center. Let (𝑥, 𝑝) :
fib𝑓(𝑦), a path from (𝑔(𝑦), 𝜀𝑦) to (𝑥, 𝑝) is given by a path 𝛾 : 𝑔(𝑦) = 𝑥 and an induced 𝜀𝑦 =
𝑓(𝛾) ⋅ 𝑝. Take 𝛾 ≔ 𝑔(𝑝)−1 ⋅ 𝜂𝑥 and this fulfils the condition via transporting along 𝜏 . ∎
Finally we can prove the main theorem of this section.
Proof of Theorem 2.2.8. If biinv(𝑓) is not inhabited, then it must be equal to 0, which is a mere
proposition. Now suppose it is inhabited, then by Theorem 2.2.7 it must be a quasi-inverse with
ℎ : 𝐵 → 𝐴 such that ℎ ∘ 𝑓 ∼ id𝐴 and 𝑓 ∘ ℎ ∼ id𝐵. We show linv(𝑓) and rinv(𝑓) are contractible,
hence biinv(𝑓) as a product of contractible types is contractible, thus a mere proposition by
definition.
Assume functional extensionality, linv(𝑓) is equivalent to ∑𝑔:𝐵→𝐴(𝑔 ∘ 𝑓 = id𝐴). We could de-
fine a function (− ∘ 𝑓) : (𝐵 → 𝐴) → (𝐴 → 𝐴) by sending 𝑔′ to 𝑔′ ∘ 𝑓 , also the pullback by 𝑓 .
Then linv(𝑓) = fib(−∘𝑓)(id𝐴). Now since qinv(𝑓) → ishae(𝑓) by Theorem 2.2.11, it is sufficient
to give a quasi-inverse of (− ∘ 𝑓) to show that (− ∘ 𝑓) is a half adjoint equivalence and we can
apply Lemma 2.2.13 to it. Define (− ∘ ℎ) : (𝐴 → 𝐴) → (𝐵 → 𝐴) by sending 𝑓 ′ to 𝑓 ′ ∘ ℎ. We have

(𝑔′ ∘ 𝑓) ∘ ℎ = 𝑔′ ∘ (𝑓 ∘ ℎ) = 𝑔′ ∘ id𝐵 = 𝑔′

(𝑓 ′ ∘ ℎ) ∘ 𝑓 = 𝑓 ′ ∘ (ℎ ∘ 𝑓) = 𝑓 ′ ∘ id𝐴 = 𝑓 ′
(2.2.8)

for any 𝑓 ′ : 𝐴 → 𝐴 and 𝑔′ : 𝐵 → 𝐴, which shows that (− ∘ ℎ) is a quasi-inverse of (− ∘ 𝑓).
Similarly, rinv(𝑓) is the fiber of (𝑓 ∘ −) over id𝐵 and (ℎ ∘ −) is a quasi-inverse of it and the proof
is analogous. ∎

2.3 Equivalences of types
We will use bi-invertible map to define our type equivalences.

Definition 2.3.1 Two types 𝐴, 𝐵 : 𝒰 are equivalent if there is a bi-invertible map 𝑓 : 𝐴 → 𝐵.
We then denote by

(𝐴 ≃ 𝐵) ≔ ∑
𝑓:𝐴→𝐵

biinv(𝑓) (2.3.1)

the type of equivalences between 𝐴 and 𝐵.

By Theorem 2.2.7 we are now allowed to say two types are equivalent iff there exists a quasi-
inverse pair between them.
Another useful characterization of equivalences of types is the following.

Definition 2.3.2 A map 𝑓 : 𝐴 → 𝐵 is contractible if all its fibers are contractible. We have the
type

hascontrFib(𝑓) ≔ ∏
𝑦:𝐵

∑
𝑥0:fib𝑓(𝑦)

∏
𝑥:fib𝑓(𝑦)

(𝑥0 = 𝑥) (2.3.2)
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Proposition 2.3.3 For any map 𝑓 : 𝐴 → 𝐵, hascontrFib(𝑓) is a mere proposition.

Proof. In Theorem 2.5.6 we will prove iscontr(fib𝑓(𝑦)) ≔ ∑𝑥0:fib𝑓(𝑦) ∏𝑥:fib𝑓(𝑦)(𝑥0 = 𝑥) is a mere
proposition. Now given 𝑝, 𝑞 : hascontrFib(𝑓), we have ∏𝑦:𝐵 𝑝(𝑦) = 𝑞(𝑦) by definition, thus 𝑝 ∼
𝑞 and by functional extensionality 𝑝 = 𝑞. ∎

Theorem 2.3.4 For any 𝑓 : 𝐴 → 𝐵 ishae(𝑓) and hascontrFib(𝑓) are logically equivalent.

Proof. One direction is given by Lemma 2.2.13. For the other, see 4.4.3 of [Uni13]. ∎
Finally, there is a connection between two equivalences we have defined.

Proposition 2.3.5 Let 𝐴, 𝐵 be mere propositions, then they are logically equivalent iff they are
equivalent.

Proof. Clearly if they are type equivalent then they are logically equivalent. Now suppose we
have 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴, we need to show they are quasi-inverses. But ∀𝑦 : 𝐵, 𝑓(𝑔(𝑦)) =
𝑦 because 𝐵 is a mere proposition and analogously we have ∀𝑥 : 𝐴, 𝑔(𝑓(𝑥)) = 𝑥. ∎
We have thus the first useful type equivalence.

Theorem 2.3.6 For any map 𝑓 : 𝐴 → 𝐵 we have

biinv(𝑓) ≃ hascontrFib(𝑓) (2.3.3)

2.4 The univalence axiom
So far we have worked only in a certain collection of types called universe. We can define maps
betweens types in this universe. But in order to consider the universe as a whole and define
maps over this universe, we need to find a “bigger” universe such that the Russell paradox
does not occur. More precisely, we postulate:

Postulate 2.4.1 For each universe 𝒰𝑖, there always exists a universe 𝒰𝑖+1 such that 𝒰𝑖 is a type
in 𝒰𝑖+1.

We then notice that:

Lemma 2.4.2 For types 𝐴, 𝐵 : 𝒰𝑖, there is a canonical function

idtoeqv : (𝐴 =
𝒰𝑖

𝐵) → (𝐴 ≃ 𝐵) (2.4.1)

Proof. Consider the identity type family id𝒰𝑖
: 𝒰𝑖 → 𝒰𝑖 defined in 𝒰𝑖+1 and a path 𝑝 : 𝐴 = 𝐵, it

induces a transport 𝑝∗ : 𝐴 → 𝐵. By induction on 𝑝 we have (refl𝐴)∗ = id𝐴, which is an equiva-
lence. ∎
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We are giving the following axiom, originally proposed by Voevodsky, to justify our intuition
that two isomorphic objects can be identified, this is already commonly used in many informal
proofs nowadays.

Axiom 2.4.3 (Univalence Axiom) For any 𝐴, 𝐵 : 𝒰𝑖, the function Eq. (2.4.1) is an equivalence.
We conclude that

(𝐴 =
𝒰𝑖

𝐵) ≃
𝒰𝑖+1

(𝐴 ≃
𝒰𝑖

𝐵) (2.4.2)

Remark 2.4.4 A universe is said to be univalent if it satisfies the univalence axiom. We assume
that all universes are univalent.

A drawback of introducing UA as an axiom is that we have lost our good computational prop-
erties of naive type theory, which is rule-based and axiom-free. When the HoTT book was pub-
lished, it was still unknown whether there is a constructive model for the axiom. This open
problem is now solved via the so called cubical type theory(see [BCH19, VMA19]), that endows
a computational possibility for proofs assuming univalence. For example, the proof assistant
Agda with cubical extension is a realization of this theory.
For sole purposes we will however simply assume UA as an axiom for causal proofs. We name
the inverse of idtoequiv as ua : (𝐴 ≃ 𝐵) → (𝐴 = 𝐵). This is useful when we see some applica-
tions of the univalence axiom in Section 3.2.

2.5 Homotopical 𝑛-types
In set theory, the equality of two elements in a set is just a logical proposition. But we have al-
ready learned that in type theory 𝑎 = 𝑏 is also a type. We may now wonder what if the identity
types of 𝐴 are all mere propositions. It turns out that this is just how we define sets in type
theory.

Definition 2.5.1 A type 𝐴 : 𝒰 is a set if it fulfills the following equivalent conditions:
1. (uniqueness of identity proofs(UIP)) ∀𝑎, 𝑏 : 𝐴 and 𝑝, 𝑞 : 𝑎 = 𝑏, we have 𝑝 = 𝑞.
2. (axiom K) ∀𝑎 : 𝐴 and 𝑝 : 𝑎 = 𝑎 we have 𝑝 = refl𝑎.

It would be uninteresting if we could only work with sets in type theory. Luckily not every
type is a set. In fact, the higher path structure of a type that we have discussed above is a gen-
eralization of sets called groupoids. This intuition is one of the important ideas in homotopy
type theory.
This leads us to give an inductively defined predicate indicating whether a type is an 𝑛-
groupoid. We begin the inductive base at −2, which is interpreted as a contractible type.
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Definition 2.5.2 The predicate is-𝑛-type : 𝒰 → 𝒰 for 𝑛 ≥ −2 is defined recursively as:

is-(-2)-type ≔ isContr(𝑋) ≔ ∑
𝑥0:𝑋

∏
𝑥:𝑋

(𝑥0 = 𝑥)

is-𝑛-type(𝑋) ≔ ∏
𝑥,𝑦:𝑋

is-(𝑛-1)-type(𝑥 =
𝑋

𝑦)
(2.5.1)

Example 2.5.3
• 1 is a (−2)-type, but 0 is not a (−2)-type.
• 1 is a (−1)-type. 0 is also a (−1)-type. Moreover, every (−1)-type is equivalent to either 1 or

0. This matches the intuition that (−1)-types are regarded as mere propositions.
• 0-types are also known as sets.

Remark 2.5.4 It is not hard to deduce that if 𝐴 : 𝒰 is an 𝑛-type, then it is also an 𝑛 + 1-type,
thus 1 is an 𝑛-type for any 𝑛 ≥ −2. However, there exists always types that are not 𝑛-type. An
easy example is therefore 𝕊𝑛+1, which we will define later and is not an 𝑛-type.

This predicate itself is actually also a mere proposition.

Lemma 2.5.5 Let 𝐴 : 𝒰 and 𝑃 : 𝐴 → 𝒰 a type family. Suppose ∀𝑎 : 𝐴, 𝑃 (𝑎) is an 𝑛-type, then so
is ∏𝑎:𝐴 𝑃(𝑎).

Proof. We proceed with induction on 𝑛. For 𝑛 = −2. Assuming each 𝑃(𝑎) is contractible with
center 𝑝𝑎 : 𝑃 (𝑎), then we choose the center of ∏𝑎:𝐴 𝑃(𝑎) to be 𝜆𝑎.𝑝𝑎. It is enough to show ∀𝑓, 𝑔 :
∏𝑎:𝐴 𝑃(𝑎), 𝑓 = 𝑔, But for each 𝑎 : 𝐴 we have 𝑓(𝑎) = 𝑔(𝑎) via the path concatenation over center
𝑝𝑎, by functional extensionality we get 𝑓 = 𝑔.
Suppose the lemma holds for 𝑛, i.e. ∏𝑎:𝐴 𝑃(𝑎) is an 𝑛-type when all 𝑃(𝑎) are. And now if each
𝑃(𝑎) is an 𝑛 + 1-type, by definition we need to show 𝑓 = 𝑔 is an 𝑛-type for any 𝑓, 𝑔 : ∏𝑎:𝐴 𝑃(𝑎).
By functional extensionality it suffices to show 𝑓 ∼ 𝑔 is an 𝑛-type since 𝑓 ∼ 𝑔 ≃ 𝑓 = 𝑔, but it is
just inductive hypothesis. ∎

Theorem 2.5.6 For 𝑛 ≥ −2 and 𝑋 : 𝒰, is-𝑛-type(𝑋) is a mere proposition.

Proof. We do induction on 𝑛 again. For 𝑛 = −2. Suppose we have two proofs (𝑎, 𝑓) and (𝑎′, 𝑓 ′)
for isContr(𝑋), where 𝑎, 𝑎′ : 𝑋 and 𝑓 : ∏𝑥:𝑋(𝑎 = 𝑥) and 𝑓 ′ : ∏𝑥:𝑋(𝑎′ = 𝑥) respectively. By path
induction on ∑-type, we need to find a 𝑝 : 𝑎 = 𝑎′ such that 𝑝∗(𝑓) = 𝑓 ′. We choose 𝑝 ≔ 𝑓(𝑎′).
However 𝑋 is contractible by any of two proofs, hence 𝑋 a mere proposition. By the defini-
tion ∏𝑥:𝑋(𝑎′ = 𝑥) is a mere proposition since 𝑎′ = 𝑥 is contractible, thus 𝑝∗(𝑓) = 𝑓 ′ is alway
inhabited.
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Now suppose for any 𝑋, is-𝑛-type(𝑋) is a mere proposition. We need to show
∏𝑥,𝑥′:𝑋 is-𝑛-type(𝑥 = 𝑥′) is a mere proposition hence is-(𝑛 + 1)-type(𝑋) is a mere proposition.
By Lemma 2.5.5 it suffices to show is-𝑛-type(𝑥 = 𝑥′) is a mere proposition, but this is just the
inductive hypothesis. ∎
A predicate can define a subuniverse of our type universe, in the sense that we take the total
space of the predicate. Precisely we have the type family 𝑃𝑛 : 𝒰 → 𝒰, 𝑃𝑛(𝐴) ≔ is-𝑛-type(𝐴)
and the total space ∑𝐴:𝒰 is-𝑛-type(𝐴). We call this total space 𝑛-Type, which is a subtype of 𝒰.

Lemma 2.5.7 For 𝑛 ≥ −1 and 𝑋 : 𝒰, we have (𝑋 → is-𝑛-type(𝑋)) → is-𝑛-type(𝑋).

Proof. Let 𝑓 : 𝑋 → is-𝑛-type(𝑋) be the map. Let 𝑥, 𝑥′ : 𝑋, 𝑓(𝑥) is a witness that 𝑋 is an 𝑛-type,
thus (𝑥 = 𝑥′) must be an (𝑛 − 1)-type. Since 𝑥, 𝑥′ are arbitrary we are done. ∎

Theorem 2.5.8 For 𝑛 ≥ −1 and 𝑋 : 𝒰, 𝑋 is an (𝑛 + 1)-type if and only if ∀𝑥 : 𝑋, 𝑥 = 𝑥 is an 𝑛
-type.

Proof. The only if part is obvious. Now we want to show 𝑋 is an (𝑛 + 1)-type given 𝑝 :
∏𝑥:𝑋 is-𝑛-type(𝑥 = 𝑥). Let 𝑥′ : 𝑋, we need to show 𝑥 = 𝑥′ is an 𝑛-type. By Lemma 2.5.7 is suf-
fices to give a map 𝑓 : (𝑥 = 𝑥′) → is-𝑛-type(𝑥 = 𝑥′). By induction on 𝑥 = 𝑥′ we may define
𝑓(refl𝑥) ≔ 𝑝(𝑥). ∎
Thus axiom K can also be generalized to characterize 𝑛-types.

Proposition 2.5.9 For 𝑛 ≥ −1 and 𝑋 : 𝒰, 𝑋 is an 𝑛-type if and only if ∀𝑥 : 𝑋, Ω𝑛+1(𝑋, 𝑥) is a
(−2)-type, i.e. contractible.

Proof. see [Uni13] Theorem 7.2.9. ∎

3 Higher Inductive Types

3.1 Introduction
It is well known that every free algebra is constructible as inductive types in dependent type
theory. However, not every presented algebra, or equivalently speaking, algebra quotient with
relations is constructible.
The higher inductive type(HIT) is a solution for this. Instead of just including generators in
the definition of inductive types, it adds also relations in the form of path constructors. By
our interpretation of equalities, these relations are factorized out and this gives us a quotient
structure(up to homotopy).
For example, suppose we have two pointed topological spaces (𝑋, 𝑥0), (𝑌 , 𝑦0), then the wedge
sum 𝑋 ∨ 𝑌  with respect to two points is defined as a higher inductive type:

• a inclusion inl : 𝑋 → 𝑋 ∨ 𝑌
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• a inclusion inr : 𝑌 → 𝑋 ∨ 𝑌
• a 1-path glue : inl(𝑥0) = inr(𝑦0).

This can be understood as 𝑋 ⊔ 𝑌 /(𝑥0 = 𝑦0) informally, i.e. a quotient space. We note that 𝑋 ∨
𝑌  comes equipped with a base point inl(𝑥0), or equivalently inr(𝑦0).
In fact, this construction is a special case of the general type colimit called pushout type. In the
category of sets the pushout is a quotient structure “over” the coproduct. This again matches
our intuition. We will see more examples in next section.
Though higher inductive types are very natural idea, it turns out to be quite cumbersome to
find a general syntax describing it. In [LS20] a semantic of HIT was constructed with cell mon-
ads. But it is still unknown whether every syntax of HIT can be translated to match this se-
mantic.
Another attempt is to reduce the type of HITs we are using in daily practice. For example,
[Doo15] has constructed the 𝑛-truncation with natural numbers and pushouts. The construc-
tion of 𝑛-truncations we have given in Section 3.4 is recursive, which means a constructor may
refer the to be constructed type itself as an argument. The biggest drawback of recursive in-
ductive types is that it becomes extremely hard to do induction on that. We will then often use
universal properties of theses types instead of the plain generated induction principles.
The pushout as a HIT is not recursive. One may even assume that every HIT can be constructed
with non-recursive ones. But [LS20] presents also a counterexample which is not representable
by non-recursive HITs.
We can still say something about the elimination and induction principles of higher inductive
types in a rather general schemata. We will give many examples later and try to give the reader
a feel of how this works.
In general, the induction principle of higher inductive type can be generated from definition
using the functorial property of a map. For example, the wedge sum about have the following
induction principle:
Given a type family 𝑃 : 𝑋 ∨ 𝑌 → 𝒰 together with two dependent maps 𝑔1 : ∏𝑥:𝑋 𝑃(inl(𝑥))
and 𝑔2 : ∏𝑦:𝑌 𝑃(inr(𝑦)), then for any 𝑝 : glue∗(𝑔1(𝑥0)) = 𝑔2(𝑦0) we can define a section 𝑓 :
∏𝑧:𝑋∨𝑌 𝑃(𝑧) such that 𝑓(inl(𝑥)) = 𝑔1(𝑥), 𝑓(inr(𝑦)) = 𝑔2(𝑦) and 𝑓∗(glue) = 𝑝.
We use the transport of path glue to gain a dependent path in the type family, this defines a
term of the function 𝑓  applied on the path constructor. If the path constructor has again argu-
ments, then we need to have again a section of dependent paths instead of just 𝑝. This is what
we usually do in recursive inductive types.
For higher paths there is also transport property and we can get higher dependent paths anal-
ogously. But the notation will be very complicated thus we need a method to convert higher
path constructors to 1-path constructors in the definition of higher inductive types. This tech-
nique is called “hubs and spokes”, see section 6.7 of [Uni13] for some details.
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Lastly we define the interval as a higher inductive type. The interval is not a complicated con-
struction, but it plays an important role in parameterizing paths in homotopy theory. The con-
tractibility of the interval is also essential in many proofs later.

Definition 3.1.1 The (closed) interval 𝐼  is defined with following constructors:
• two points 0𝐼 , 1𝐼 : 𝐼
• a path conn : 0𝐼 = 1𝐼

The elimination principle of 𝐼  says if we want to define a function 𝑓 : 𝐼 → 𝐵 for any type 𝐵.
We must have two points 𝑏0, 𝑏1 : 𝐵 and a path 𝑝 : 𝑏0 = 𝑏1 such that 𝑓(0𝐼) = 𝑏0, 𝑓(1𝐼) = 𝑏1 and
𝑓∗(conn) = 𝑝. This is just the parameterizing of a path in 𝐵.
The induction principle of the interval is formulated analogously. Given a type family 𝑃 : 𝐼 →
𝑈  together with 𝑎 : 𝑃 (0𝐼) and 𝑏 : 𝑃 (1𝐼). Then for any 𝑝 : conn∗(𝑎) = 𝑏 we can define a section
𝑓 : ∏𝑥:𝐼 𝑃(𝑥) such that 𝑓(0𝐼) = 𝑎, 𝑓(1𝐼) = 𝑏 and 𝑓∗(conn) = 𝑝.

Lemma 3.1.2 The interval 𝐼  is contractible.

Proof. We choose the center to be 0𝐼 . By definition we need to define a 𝑓 : ∏𝑥:𝐼(𝑥 = 0𝐼). We
set 𝑓(0𝐼) = refl0𝐼

 and 𝑓(1𝐼) = conn−1. It remains to find a path 𝑝 : conn∗(refl0𝐼
) = conn−1.

This type is equal to conn−1 ⋅ refl0𝐼
= conn−1 by definition, which is inhabited by ruconn−1  in

Proposition 2.1.2. ∎

3.2 Homotopical pushouts
We construct now a finite colimit of types, namely the pushout, which turns out to be very
useful later.

Definition 3.2.1 The (homotopical) pushout 𝐴 ⊔𝐶 𝐵 of a span 𝐴 ←
𝑓

𝐶 →
𝑔

𝐵 is defined as:
• inl : 𝐴 → 𝐴 ⊔𝐶 𝐵
• inr : 𝐵 → 𝐴 ⊔𝐶 𝐵
• glue : ∏𝑐:𝐶 inl(𝑓(𝑐)) = inr(𝑔(𝑐))

with respect to the following commutative diagram:

𝑔

𝑓 inr
inl

𝐶 𝐵

𝐴 𝐴 ⊔𝐶 𝐵

The elimination rule says if we want to define a function 𝑠 : 𝐴 ⊔𝐶 𝐵 → 𝐷 for any type 𝐷, we
need to have:
• for each 𝑎 : 𝐴, the term 𝑠(inl(𝑎)) : 𝐷
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• for each 𝑏 : 𝐵, the term 𝑠(inr(𝑏)) : 𝐷
• for each 𝑐 : 𝐶, the path 𝑠∗(glue(𝑐)) : 𝑠(inl(𝑓(𝑐))) = 𝑠(inr(𝑔(𝑐)))

Many objects can be expressed as a type pushout. We give following examples:

Example 3.2.2
1. The pushout of the span 1 ← 𝑋 → 1 is called the suspension Σ𝑋 of 𝑋.
2. The pushout of the span 𝑋 ←←←←

𝑥0
1 →→→→

𝑦0
𝑌  is called the wedge sum 𝑋 ∨ 𝑌  of 𝑋 and 𝑌 .

3. This definition can be generalized to the indexed wedge sum. Given a index type 𝐼  and a
pointed type family 𝑃 : 𝐼 → 𝒰●, the pushout of the span 1 ← 𝐼 →

𝑃
∑𝑖:𝐼(𝑋𝑖, 𝑥𝑖) is the bou-

quet ⋁
𝑖∈𝐼

𝑋𝑖.
4. The pushout of the span 1 ← 𝑋 →

𝑓
𝑌  is the cone or cofiber of 𝑓 : 𝑋 → 𝑌 . Homotopically we

have 𝑌 /𝑋 ≃ cone(𝑓) the quotient space.
5. The classical definition of smash product 𝑋 ∧ 𝑌 ≔ (𝑋 × 𝑌 )/(𝑋 ∨ 𝑌 ) can be then

translated to (𝑋 ∧ 𝑌 ) = cone(𝑓) where 𝑓 : 𝑋 ∨ 𝑌 → 𝑋 × 𝑌  is defined by 𝑓(inl(𝑥)) =
(𝑥, 𝑦0), 𝑓(inr(𝑦)) = (𝑥0, 𝑦), 𝑓(glue) = refl(𝑥0,𝑦0) the inclusion.

Unlike the pushout type however, the pullback of types is directly definable in dependent type
theory:

Definition 3.2.3 A pullback 𝐴 ×𝐶 𝐵 of a diagram 𝐴 →
𝑓

𝐶 ←
𝑔

𝐵 is given as:

𝐴 ×𝐶 𝐵 ≔ ∑
𝑎:𝐴

∑
𝑏:𝐵

𝑓(𝑎) = 𝑔(𝑏) (3.2.1)

In general, classical type theory has already constructed the rule-based cartesian product as
a type limit and coproduct as a colimit. Now with higher inductive types, finite pushout and
quotient(see Section 4.1) can be included in the category of types. This makes the type category
in some ways more “complete”.
Now we prove some universal properties of limits and colimits in category of types.

Proposition 3.2.4 (Universal property of product type) Let 𝐴, 𝐵 : 𝒰 be any types and 𝐴 × 𝐵 :
𝒰 the product type with canonical eliminator pr𝐴 : 𝐴 × 𝐵 → 𝐴 and pr𝐵 : 𝐴 × 𝐵 → 𝐵.
1. For each 𝐷 : 𝒰 a type with 𝑓 : 𝐷 → 𝐴, 𝑔 : 𝐷 → 𝐵, there is a unique function ℎ : 𝐷 → 𝐴 × 𝐵

making the following diagram commute (homotopically).

ℎ
𝑓 𝑔

pr𝐵pr𝐴

𝐷

𝐴 × 𝐵𝐴 𝐵
i.e. there are homotopies 𝑓 ∼ pr𝐴 ∘ ℎ and 𝑔 ∼ pr(𝐵) ∘ 𝑔.
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2. If there is a type 𝐶 : 𝒰 together with 𝑝 : 𝐶 → 𝐴 and 𝑞 : 𝐶 → 𝐵 satisfying this property, then
we have an equivalence 𝑟 : 𝐴 × 𝐵 ≃ 𝐶. Moreover, we get ua(𝑟) : 𝐴 × 𝐵 =

𝒰
𝐶 by the univa-

lence axiom.

Proof. Take 𝑑 : 𝐷, we define ℎ(𝑑) ≔ (𝑓(𝑑), 𝑔(𝑑)) : 𝐴 × 𝐵, then we have 𝑓(𝑑) = pr𝐴(ℎ(𝑑)) and
𝑔(𝑑) = pr𝐵(ℎ(𝑑)) the expected homotopies. Further suppose we have another function ℎ′ such
that 𝑓 ∼ pr𝐴 ∘ ℎ′ and 𝑔 ∼ pr𝐵 ∘ ℎ′, then pr𝐴 ∘ ℎ′ ∼ pr𝐴 ∘ ℎ and pr𝐵 ∘ ℎ′ ∼ pr𝐵 ∘ ℎ. By the elim-
ination principle of 𝐴 × 𝐵, we know for any 𝑑 : 𝐷, ℎ′(𝑑) = ℎ(𝑑) and ℎ ∼ ℎ′. By functional ex-
tensionality, ℎ′ = ℎ. This proves the uniqueness.
Because 𝐶 and 𝐴 × 𝐵 all have this universal property, we get two functions 𝑟 : 𝐴 × 𝐵 → 𝐶 and
𝑟′ : 𝐶 → 𝐴 × 𝐵 with four homotopies:

𝑝 ∼ pr𝐴 ∘ 𝑟′

𝑞 ∼ pr𝐵 ∘ 𝑟′

pr𝐴 ∼ 𝑝 ∘ 𝑟
pr𝐵 ∼ 𝑞 ∘ 𝑟

(3.2.2)

By 𝑟 ∘ 𝑟′ : 𝐶 → 𝐶 we can get 𝑝 ∼ 𝑝 ∘ (𝑟′ ∘ 𝑟) and 𝑞 ∼ 𝑞 ∘ (𝑟′ ∘ 𝑟) via concatenation. But we know
id𝐶  has this property too so 𝑟 ∘ 𝑟′ = id𝐶  and similarly for 𝑟′ ∘ 𝑟 = id𝐴×𝐵. ∎
This is an important application of the univalence. As we have transformed the idea “isomor-
phic objects are the same” in the last step to a formal argumentation via ua.
The same version for pullbacks is proven analogously:

Proposition 3.2.5 (Universal property of pullback) Let 𝐴 →
𝑓

𝐶 ←
𝑔

𝐵 be a diagram and 𝐴 ×𝐶 𝐵
the pullback of it defined in previous definition with projections pr𝐴 : 𝐴 ×𝐶 → 𝐴 and pr𝐵 :
𝐴 ×𝐶 𝐵 → 𝐵.
1. For each 𝐷 : 𝒰 with 𝑝 : 𝐷 → 𝐴, 𝑞 : 𝐷 → 𝐵 and 𝑠 : 𝑓 ∘ 𝑝 ∼ 𝑔 ∘ 𝑞, there is a unique function ℎ :

𝐷 → 𝐴 ×𝐶 𝐵 such that the following diagram commutes.

ℎ

𝑝

𝑞

pr𝐴

pr𝐵

𝑓
𝑔

𝐷

𝐴 ×𝐶 𝐵

𝐴

𝐵

𝐶
2. If there is a type 𝐸 : 𝒰 together with 𝑖 : 𝐸 → 𝐴, 𝑗 : 𝐸 → 𝐵 and homotopy 𝑘 : 𝑓 ∘ 𝑖 ∼ 𝑔 ∘ 𝑗 sat-

isfying this property, then we have an equivalence 𝑟 : 𝐴 ×𝐶 𝐵 ≃ 𝐸 and ua(𝑟) : 𝐴 ×𝐶 𝐵 = 𝐸.

Sketch of proof. We define ℎ(𝑑) ≔ (𝑝(𝑑), 𝑞(𝑑), 𝑠(𝑑)) for 𝑑 : 𝐷. The elimination principle of pull-
back ensures the uniqueness.
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By using universal property we get 𝑟 : 𝐴 ×𝐶 𝐵 → 𝐸 and 𝑟′ : 𝐸 → 𝐴 ×𝐶 𝐵. Some computations
on homotopies show they are quasi inverses. Note this can be done by any proof assistant. ∎
We have so far written the data of pullbacks and products in phrases. We shall remind of the
definition of cone and cocone in category theory. This is not too hard to pack them together to
formalize a definition:

Definition 3.2.6 Given a diagram 𝒟 = 𝐴 ←
𝑓

𝐶 →
𝑔

𝐵 and a type 𝐷, a cocone of the diagram is a
type 𝐷 : 𝒰 together with functions 𝑝 : 𝐴 → 𝐷, 𝑞 : 𝐵 → 𝐷 and a homotopy 𝑘 : 𝑝 ∘ 𝑓 ∼ 𝑞 ∘ 𝑔. The
type of all cocones of the diagram 𝒟 is thus given by:

cocone(𝒟) ≔ ∑
𝐷:𝒰

∑
𝑝:𝐴→𝐷

∑
𝑞:𝐵→𝐷

∏
𝑐:𝐶

𝑝(𝑓(𝑐)) = 𝑞(𝑔(𝑐)) (3.2.3)

We see that the type cocone(𝒟) for any diagram 𝒟 is actually inhabited by our just defined
higher inductive type 𝐴 ⊔𝐶 𝐵 and its constructors. Bearing this definition in mind, we can give
the universal property of pushout compactly.

Proposition 3.2.7 (Universal property of pushout) Let 𝒟 = 𝐴 ←
𝑓

𝐶 →
𝑔

𝐵 be a diagram, then for
any 𝐷 : cocone(𝒟), there is a unique function ℎ : 𝐴 ⊔𝐶 𝐵 → 𝐷 such that the following diagram
commutes.

𝑔

𝑓 inr
inl

𝑝

𝑞

ℎ

𝐶 𝐵

𝐴 𝐴 ⊔𝐶 𝐵

𝐷

Moreover, 𝐴 ⊔𝐶 𝐵 is a universal cocone. That is to say, for any other 𝐸 : cocone(𝒟) satisfying
this property, we have 𝑟 : 𝐴 ⊔𝐶 𝐵 ≃ 𝐸 and ua(𝑟) : 𝐴 ⊔𝐶 𝐵 = 𝐸.

Proof. With some abuse of languages let 𝐷 = (𝐷, 𝑝, 𝑞, 𝑘) be a cocone. We define ℎ with elimi-
nation principle of pushout: ℎ((inl(𝑎))) ≔ 𝑝(𝑎), ℎ(inr(𝑏)) ≔ 𝑞(𝑏) and ℎ∗(glue(𝑐)) ≔ 𝑘(𝑐). Now
suppose we have ℎ′ : 𝐴 ⊔𝐶 𝐵 → 𝐷 such that 𝑝 = ℎ′ ∘ inl and 𝑞 = ℎ′ ∘ inr and ℎ′ ∘ inl ∘ 𝑓 = ℎ′ ∘
inr ∘ 𝑔, then this formulates exactly the elimination principle hence ℎ′ = ℎ.
We leave out the proof of universal since they are just tedious computations. ∎
Note that the universal property of pushout is a “mapping out” property, thus it is already
given by the generated elimination principle of 𝐴 ⊔𝐶 𝐵. But this is not the case for product and
pullback, where they can be characterized either by a “mapping in” universal property or a
“mapping out” elimination rule.
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3.3 Suspensions and spheres
We have mentioned in the previous section that the suspension of a type 𝑋 is a homotopical
pushout 1 ← 𝑋 → 1. We are going to prove some properties of the suspension.

Definition 3.3.1 For any type 𝐴 the suspension Σ𝐴 is a higher inductive type presented by:
• a point 𝑁 : Σ𝐴
• a point 𝑆 : Σ𝐴
• a function merid : 𝐴 → (𝑁 = 𝑆)

𝕊1 and its suspension
We can see that because of (1 → 𝐴) ≃ 𝐴, this definition coincidences with the pushout of span
1 ← 𝐴 → 1, where we rename one 1 as 𝑁  and the other as 𝑆. Again we formulate the recursive
principle of Σ𝐴 since it is frequently used in the proof. In order to define a function 𝑓 : Σ𝐴 →
𝐵, it suffices to define:
• the term 𝑓(𝑁) : 𝐵
• the term 𝑓(𝑆) : 𝐵
• for each 𝑎 : 𝐴, the path 𝑓∗(merid(𝑎)) : 𝑓(𝑁) = 𝑓(𝑆)

The suspension lifts a point to a path connecting 𝑁  and 𝑆, and each path can be seen as an
interval, which is contractible. This observation is essential in the following proposition.

Proposition 3.3.2 Let (𝐴, 𝑎0) and (𝐵, 𝑏0) be two pointed types, denote by (𝐴, 𝑎0) ∗ → (𝐵, 𝑏0) ≔
∑𝑓:𝐴→𝐵(𝑓(𝑎0) = 𝑏0) the type of all pointed maps from 𝐴 to 𝐵, then we have

((Σ𝐴, 𝑁) ∗ → (𝐵, 𝑏0)) ≃ ((𝐴, 𝑎0) ∗ → Ω(𝐵, 𝑏0)) (3.3.1)

Proof. Suppose we have now a map 𝑔 : 𝐴 → (𝑏0 = 𝑏0) such that 𝑔(𝑎0) = refl𝑏0
, then we can de-

fine 𝑓 : Σ𝐴 → 𝐵 by 𝑓(𝑁) ≔ 𝑏0 ≕ 𝑓(𝑆) and 𝑓∗(merid(𝑎)) = 𝑔(𝑎). This map is indeed pointed
since 𝑓(𝑁) = 𝑏0. This defines a map 𝜓 : ((𝐴, 𝑎0) ∗ → Ω(𝐵, 𝑏0)) → ((Σ𝐴, 𝑁) ∗ → (𝐵, 𝑏0)).
Conversely if we have a map 𝑓 : Σ𝐴 → 𝐵 such that 𝑓(𝑁) ≔ 𝑏0. We construct 𝑔 : 𝐴 → (𝑏0 =
𝑏0) by sending 𝑎 : 𝐴 to 𝑓∗(merid(𝑎)), by Lemma 3.1.2 the type 𝑁 = 𝑆 is contractible and we
get contr : ∏𝑞:𝑁=𝑆 𝑞 = refl𝑁 . Calculate 𝑓∗(contr(merid(𝑎0))) gives us 𝑝 : 𝑔(𝑎0) = refl𝑏0

 and 𝑔 is
pointed. This defines a map 𝜑 : ((Σ𝐴, 𝑁) ∗ → (𝐵, 𝑏0)) → ((𝐴, 𝑎0) ∗ → Ω(𝐵, 𝑏0)).
We have then 𝜓(𝜑(𝑓)) = 𝑓  and 𝜑(𝜓(𝑔)) = 𝑔 just by the construction. ∎
Following the already known CW-structure we can define a circle 𝕊1 as
• a point base : 𝕊1

• a path loop : reflbase = reflbase

We take this approach further to define 𝕊2 by
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• a point base : 𝕊{2}

• a 2-path loop : reflreflbase
= reflreflbase

This soon encounters problems since the definitions are not inductively structured. Operating
on higher paths is also an inconvenient part of this definition. In order to convert these higher
paths into 1-path, we use suspensions.

Definition 3.3.3 The 𝑛-sphere 𝕊𝑛 is defined recursively by:

𝕊0 ≔ 2 ≔ 1 + 1

𝕊𝑛+1 ≔ Σ𝕊𝑛
(3.3.2)

This definition is much better than our naive attempt. One advantage is that we can prove the
universal property of 𝕊𝑛, which links our definition of loop spaces with the classical one.

Proposition 3.3.4 Let (𝐵, 𝑏0) be a pointed type, we have following equivalence:

(𝕊𝑛 ∗ → 𝐵) ≃ Ω𝑛(𝐵, 𝑏0) (3.3.3)

Proof. By Proposition 3.3.2 and Definition 3.3.3, we can inductively transform the first term into
(1 + 1 ∗ → Ω𝑛𝐵). It remains to show (1 + 1 ∗ → 𝐵) ≃ 𝐵. First note that (1 → 𝐵) ≃ 𝐵 since 1 is
initial. We show (1 + 1 ∗ → 𝐵) ≃ (1 → 𝐵).
Without loss of generality we assume 1 + 1 is pointed by inr(∗). Now given a 𝑓 : 1 + 1 ∗ → 𝐵
with 𝑝 : 𝑓(inr(∗)) = 𝑏0, we have 𝑓 ∘ inl : 1 → 𝐵. And given 𝑔 : 1 → 𝐵 we define 𝑔′ : 1 + 1 → 𝐵
by induction on coproduct, sending 𝑔′(inl(∗)) ≔ 𝑔(∗) and 𝑔′(inr(∗)) ≔ 𝑏0, then 𝑔′ is pointed.
Compute (𝑓 ∘ inl)′ gives us 𝑓  back and 𝑔′ ∘ inl is just 𝑔 by definition. ∎
As an application we construct the real projective space ℝℙ𝑛.

Lemma 3.3.5 There exists a non-trivial antipodal map 𝑓𝑛 : 𝕊𝑛 → 𝕊𝑛.

Proof. For the case when 𝑛 = 0, we can define 𝑓(0) ≔ 1 and 𝑓(1) ≔ 0 by the induction princi-
ple of 2. Now inductively, for 𝕊𝑛 = Σ𝕊𝑛−1, we do induction on the suspension. Suppose we
have already a map 𝑓𝑛−1 : 𝕊𝑛−1 → 𝕊𝑛−1 and we define 𝑓𝑛 : 𝕊𝑛 ≔ Σ𝕊𝑛−1 → Σ𝕊𝑛−1 by 𝑓(𝑁) ≔
𝑆, 𝑓(𝑆) ≔ 𝑁  and ∀𝑥 : 𝕊𝑛−1, 𝑓∗(merid(𝑥)) ≔ merid(𝑓𝑛−1(𝑥))−1 : 𝑆 = 𝑁 . ∎

Definition 3.3.6 The real projective space ℝℙ𝑛 is defined by cone(𝑓𝑛) where 𝑓𝑛 is the one in
previous lemma.

This definition is elegant but ill-behaved when calculating the property of spaces later. The
reason is that the antipodal map is inductively constructed. A better solution is then to define
a universal bundle of ℝℙ𝑛 with the space simultaneously via inductive pushouts. [BR17] used
this idea and proved an equivalence of higher homotopy groups between real projective spaces
and spheres.
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3.4 Type truncations
Now We want to define a general truncation of types into an 𝑛-type, or in the language of ho-
motopy theory, its 𝑛th Postnikov section.

Definition 3.4.1 For 𝑛 ≥ −1, the truncated type |𝐴|𝑛 of 𝐴 is defined as a higher inductive type
with following constructors.
• a function | − |𝑛 : 𝐴 → |𝐴|𝑛
• a function ℎ : (𝕊𝑛+1 → |𝐴|𝑛) → |𝐴|𝑛
• a dependent path 𝑠 : ∏𝑟:𝕊𝑛+1→ |𝐴|𝑛

∏𝑥:𝕊𝑛+1(𝑟(𝑥) = ℎ(𝑟))

We must convince ourself that after truncation |𝐴|𝑛 is already an 𝑛-type.

Theorem 3.4.2 For 𝑛 ≥ −1 and 𝐴 : 𝒰, |𝐴|𝑛 is an 𝑛-type.

Proof. By Proposition 2.5.9 we need to show Ω𝑛+1(|𝐴|𝑛, 𝑥) is contractible for every 𝑥 : |𝐴|𝑛. By
Proposition 3.3.4 this is equivalent to the type (𝕊𝑛+1 ∗ → (|𝐴|𝑛, 𝑥)).
We choose the contractible center to be 𝑐𝑥 the constant map to 𝑥 and the path refl𝑥 : 𝑐𝑥(𝑁) =
𝑥, this is of course pointed. Now for a pair (𝑟, 𝑝) with 𝑟 : 𝕊𝑛+1 → |𝐴|𝑛 and 𝑝 : 𝑟(𝑁) = 𝑥,
we need to show 𝑟(𝑦) = 𝑐𝑥(𝑦) = 𝑥. This is given by the path 𝑠(𝑟)(𝑦) ⋅ 𝑠(𝑟)(𝑁)−1 ⋅ 𝑝. Finally
the path 𝑝 after transporting along 𝑟 = 𝑐𝑥 should be the path refl𝑥. By definition this is
(𝑠(𝑟)(𝑁) ⋅ 𝑠(𝑟)(𝑁)−1 ⋅ 𝑝)

−1
⋅ 𝑝 = refl𝑥 by computation. ∎

The induction principle of 𝑛-truncation says that suppose we want to define a section 𝑓 :
∏𝑥: |𝐴|𝑛

𝑃(𝑥) for a fibration 𝑃 : |𝐴|𝑛 → 𝒰, we need to have
• For each 𝑎 : 𝐴, an element 𝑝𝑎 : 𝑃 (|𝑎|𝑛) such that 𝑓(|𝑎|𝑛) = 𝑝𝑎

• For each 𝑟 : 𝕊𝑛+1 → |𝐴|𝑛 and 𝑟′ : ∏𝑥:𝕊𝑛+1 𝑃(𝑟(𝑥)), an element ℎ′(𝑟, 𝑟′) : 𝑃 (ℎ(𝑟))
• For each 𝑟 : 𝕊𝑛+1 → |𝐴|𝑛, 𝑟′ : ∏𝑥:𝕊𝑛+1 𝑃(𝑟(𝑥)) and 𝑥 : 𝕊𝑛+1, a dependent path

𝑠(𝑟)(𝑥)∗(𝑟
′(𝑥)) = ℎ′(𝑟, 𝑟′)

This principle is cumbersome to handle since we have defined here first time a recursive higher
inductive type. Nevertheless, if we can ensure that the fibration lies all on 𝑛-types, then things
become much simpler.

Proposition 3.4.3 Let 𝑃 : |𝐴|𝑛 → 𝒰 be a fibration such that all 𝑃(𝑥) is an 𝑛-type. Then given 𝑔 :
∏𝑎:𝐴 𝑃(|𝑎|𝑛) there is always a section 𝑓 : ∏𝑥: |𝐴|𝑛

𝑃(𝑥) such that 𝑓(|𝑎|𝑛) = 𝑔(𝑎).

Proof. The idea is to use the 𝑛-truncation to construct the second and third data listed in the
induction principle above, see 7.3.2 of [Uni13] for a detailed proof. ∎
In fact, if 𝑃  is a constant family to 𝐸 for 𝐸 an 𝑛-type, we can extend then every function 𝑓 :
𝐴 → 𝐸 to exactly an ext(𝑓) : |𝐴|𝑛 → 𝐸 such that ext(𝑓)(|𝑎|𝑛) = 𝑓(𝑎). This is just the elimination
principle of the truncation.
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Proposition 3.4.4 Let 𝐴, 𝐵 : 𝒰 and 𝐵 is an 𝑛-type for 𝑛 ≥ −2, then we have following equiv-
alence

(𝐴 → 𝐵) ≃ (|𝐴|𝑛 → 𝐵) (3.4.1)

Proof. For every 𝑓 : 𝐴 → 𝐵 we have already ext(𝑓) : |𝐴|𝑛 → 𝐵. Now suppose we have 𝑔 :
|𝐴|𝑛 → 𝐵, we have a function 𝑔 ∘ | − |𝑛 : 𝐴 → 𝐵. Moreover ext(𝑓) ∘ | − |𝑛 = 𝑓  by definition and
ext(𝑔 ∘ | − |𝑛)(|𝑎|𝑛) = 𝑔(|𝑎|𝑛) for every |𝑎|𝑛 : |𝐴|𝑛. ∎
This is a kind of the universal property of the 𝑛-truncation. We can consider the analogy that
the 𝑛-th homotopy group of a CW-complex is isomorphic to the one of the 𝑛 + 1-th section of
this CW-structure. We will discuss more in next chapter.
A notable fact of 𝑛-types is that they build a reflexive subcategory of the category of types.
Thus we have the following proposition immediately.

Proposition 3.4.5 A type 𝐴 : 𝒰 is an 𝑛-type if and only if | − |𝑛 : 𝐴 → |𝐴|𝑛 is an equivalence.

Proof. Since 𝑛-types is closed under equivalences so “if” part is clear. Conversely if 𝐴 is an 𝑛
-type, we have ext(id𝐴) : |𝐴|𝑛 → 𝐴 such that ext(id𝐴) ∘ | − |𝑛 = id𝐴. By Proposition 3.4.4 we
only need to show | − | ∘ ext(id𝐴) ∘ | − |𝐴 = id|𝐴|𝑛 ∘ | − |𝑛 and use the bijectivity. This is true by
computation. ∎
A dual concept of 𝑛-types in homotopy theory is the connectedness. A type 𝐴 is 𝑛-connected
if it has no non-trivial homotopy group below 𝑛. We define this now formally.

Definition 3.4.6 A function 𝑓 : 𝐴 → 𝐵 is said to be 𝑛-connected if for any 𝑏 : 𝐵, the 𝑛-truncated
fibration |fib𝑓(𝑏)|𝑛 is contractible. A type 𝐴 : 𝒰 is said to be 𝑛-connected if the canonical func-
tion 𝐴 → 1 is 𝑛-connected, i.e. |𝐴|𝑛 is contractible.

Proposition 3.4.7 if 𝐴 : 𝒰 is 𝑛-connected, then there is an equivalence (𝐴 → 𝐵) ≃ 𝐵 for 𝐵 an 𝑛
-type.

Proof. By Proposition 3.4.4, we have (𝐴 → 𝐵) ≃ (|𝐴|𝑛 → 𝐵), but |𝐴|𝑛 ≃ 1 because 𝐴 is 𝑛-con-
nected, thus (𝐴 → 𝐵) ≃ (1 → 𝐵) ≃ 𝐵. ∎

4 Mathematics

4.1 Algebraic structures
We construct at first another finite colimit of sets, the quotient. We need to use the truncation
defined in the last section.
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Definition 4.1.1 Let 𝐴 : 𝒰 be a set and 𝑅 : 𝐴 × 𝐴 → -1-Type a relation. The set quotient 𝐴/𝑅 is
the higher inductive type generated by:
• A projection 𝜋 : 𝐴 → 𝐴/𝑅
• A function equ : ∏𝑥,𝑦:𝐴 𝑅(𝑥, 𝑦) → (𝜋(𝑥) = 𝜋(𝑦))
• The 0-truncation trunc : ∏𝑥,𝑦:𝐴 ∏𝑟,𝑠:𝑥=𝑦(𝑟 = 𝑠)

The reason why we need the last truncation constructor is that in general the colimit of 𝑛-types
is not an 𝑛-type anymore. In order to get a 0-type again, we need to truncate it.
After truncation we will see that the projection 𝜋 : 𝐴 → 𝐴/𝑅 is surjective, i.e. there merely ex-
ists a 𝑥 : 𝐴 for any 𝑞 : 𝐴/𝑅 such that 𝜋(𝑥) = 𝑞. But by induction on 𝐴/𝑅, in the case where 𝑞 ≔
𝜋(𝑥), we have of course 𝜋(𝑥) = 𝜋(𝑥) and the path properties we need to verify become trivial
since the goal is a mere proposition.
We have the following universal property by quotients:

Proposition 4.1.2 For any set 𝐵, we have an equivalence:

(𝐴/𝑅 → 𝐵) ≃ ∑
𝑓:𝐴→𝐵

∏
𝑥,𝑦:𝐴

𝑅(𝑥, 𝑦) → (𝑓(𝑥) = 𝑓(𝑦)) (4.1.1)

Proof. The recursion principle of 𝐴/𝑅 says suppose we have a function 𝑓 : 𝐴 → 𝐵 and a
proof that ∏𝑥,𝑦:𝐴 𝑅(𝑥, 𝑦) → (𝑓(𝑥) = 𝑓(𝑦)), then we have a function 𝑓 ′ : 𝐴/𝑅 → 𝐵 such that
𝑓 ′(𝜋(𝑥)) = 𝑓(𝑥). This defines a function 𝜓 : 𝑓 ↦ 𝑓 ′. On the other hand, given a function 𝑔 :
𝐴/𝑅 → 𝐵, we have a function 𝑔 ∘ 𝜋 : 𝐴 → 𝐵.
We have 𝑓 ′ ∘ 𝜋 = 𝑓  by definition, which shows 𝜓 is a right inverse of (− ∘ 𝜋). In order to show
it is also a left inverse, i.e. (𝑔 ∘ 𝜋)′(𝑞) = 𝑔(𝑞), ∀𝑞 : 𝐴/𝑅, we can use the fact that 𝜋 is a surjection
and we may write 𝑞 = 𝜋(𝑥), 𝑥 : 𝐴. In this case we have

(𝑔 ∘ 𝜋)′(𝑞) = (𝑔 ∘ 𝜋)′(𝜋(𝑥)) = (𝑔 ∘ 𝜋)(𝑥) = 𝑔(𝑞) (4.1.2)

This completes the proof. ∎
The next important topic we will cover is the group. In general, a group is considered as a quo-
tient of the free group with many relations. Before we see some concrete examples, lets review
the basic definition of a group.

Definition 4.1.3 A group is a tuple (𝐺, ⋅, 𝑒, (⋅)−1) with 𝐺 : 0-Type together with proofs of fol-
lowing conditions:
• associativity: ∏𝑥,𝑦,𝑧:𝐺 𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧.
• inverse: ∏𝑥:𝐺 𝑥 ⋅ 𝑥−1 = 𝑒 and ∏𝑥:𝐺 𝑥−1 ⋅ 𝑥 = 𝑒.
• unit: ∏𝑥:𝐺 𝑥 ⋅ 𝑒 = 𝑥 and ∏𝑥:𝐺 𝑒 ⋅ 𝑥 = 𝑥.

A group is called abelian if it fulfills the additional condition:
• commutativity: ∏𝑥,𝑦:𝐺 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥.
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For simplicity we will use the base set 𝐺 to represent the whole group.

Definition 4.1.4 The free group 𝐹(𝐴) generated by a given set 𝐴 is a higher inductive type
generated by:
• a map gen : 𝐴 → 𝐹(𝐴) which embeds all generators
• a operator (⋅) : 𝐹 (𝐴) × 𝐹(𝐴) → 𝐹(𝐴)
• a unit element 𝑒 : 𝐹(𝐴)
• a map (⋅)−1 : 𝐹 (𝐴) → 𝐹(𝐴)
• a dependent map asso : ∏𝑥,𝑦,𝑧:𝐹(𝐴) 𝑥 ⋅ (𝑦 ⋅ 𝑧) = (𝑥 ⋅ 𝑦) ⋅ 𝑧
• two dependent maps linv : ∏𝑥:𝐹(𝐴) 𝑥 ⋅ 𝑥−1 = 𝑒 and rinv : ∏𝑥:𝐹(𝐴) 𝑥−1 ⋅ 𝑥 = 𝑒
• two dependent maps lu : ∏𝑥:𝐹(𝐴) 𝑥 ⋅ 𝑒 = 𝑥 and ru : ∏𝑥:𝐹(𝐴) 𝑒 ⋅ 𝑥 = 𝑥
• a truncation trunc : ∏𝑥,𝑦:𝐹(𝐴) ∏𝑝,𝑞:𝑥=𝑦 𝑝 = 𝑞

For simplicity we will write gen(𝑎) : 𝐹 (𝐴) as 𝑎 : 𝐹(𝐴).

A presented group is a quotient of the free group with many relations between generators. The
general schemata of higher inductive types will be(suppose there are finite many relations):
• All constructors of 𝐹(𝐴)
• For each relation, a path 𝑎±1

1 …𝑎±1
𝑛 = 𝑒, where 𝑎𝑖 are generators.

Let us consider some examples to close this section.

Definition 4.1.5 The cyclic group 𝐶𝑛 of order 𝑛 can be defined as a higher inductive type with
a parameter 𝑛 : ℕ:
• a generator 1𝑛 : 𝐶𝑛

• a unit 0𝑛 : 𝐶𝑛

• All group operations and axioms and the 0-truncation
• a path (1𝑛)𝑛 = 0𝑛

where (⋅)𝑛 denotes the 𝑛-times composition of the multiplication, which can be easily defined
by induction on ℕ.

There are many ways to define the integer type and a group structure on it. For example, we
can define ℤ just as a normal inductive type:

Definition 4.1.6 The integer is an inductive type generated by the followiing three construc-
tors:
• a point 0 : ℤ
• a map pos : ℕ → ℤ
• a map neg : ℕ → ℤ
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We could define the addition on ℤ by induction. The readers will soon discover that they are
stuck in so many case analysis just when they try to prove the group axioms. For the sole pur-
pose in this thesis however, this definition is enough.
Alternatively in group theory we can also regard ℤ as the free group 𝐹(1). This definition is
straightforward, but lacks the good property of doing inductions. Moreover, it will be hard to
decide the canonical form of terms computationally.
A perhaps better solution is to consider ℤ as a quotient of ℕ × ℕ with the following relation:

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇔ (𝑎 + 𝑑 = 𝑏 + 𝑐) (4.1.3)

The monoid operation is defined as (𝑎, 𝑏) + (𝑐, 𝑑) ≔ (𝑎 + 𝑐, 𝑏 + 𝑑) and the unit element is (0, 0).
The inverse of (𝑎, 𝑏) is thus (𝑏, 𝑎). All these operations are well defined because the projection
𝜋 : ℕ × ℕ → ℤ is a surjection.
This is also called the Grothendieck group of ℕ. Using the universal property of the quotients,
we can find a good induction principle for this type that mimics the one of our naive definition.
We mention that it is now possible to define a power function 𝐺 × ℤ → 𝐺 by induction on ℤ.
This observation is helpful by calculating the fundamental group of 𝕊1 in Theorem 4.3.4.

4.2 Loop spaces and homotopy groups
We can focus on the subcategory of pointed types now, this imitates the concept of pointed
spaces. We see that in pointed types many objects of homotopy theory are now synthetic.
Recall that in Definition 2.1.8 we have defined the loop space of a pointed type. It is an analogy
of the homotopy groups’ definition in classic algebraic topology. However, in order to intro-
duce a notion of homotopy groups that matches our usual set-theoretic description of such
objects, we need to truncate it into 0-types.

Definition 4.2.1 The 𝑛-th homotopy group 𝜋𝑛(𝐴) of a pointed type 𝐴 for 𝑛 ≥ 0 is the 0-trun-
cation of the 𝑛-th loop space |Ω𝑛(𝐴, 𝑎)|0.

Proposition 4.2.2 𝜋𝑛(𝐴) is a group for 𝑛 ≥ 1.

Proof. By universal property of truncations we can define the group operation 𝑢 ⋅ 𝑣 : 𝜋𝑛(𝐴) ×
𝜋𝑛(𝐴) → 𝜋𝑛(𝐴) by assuming 𝑢 = |𝑝|0 and 𝑣 = |𝑞|0. For 𝑛 ≥ 1 𝑝 and 𝑞 are paths. Then we define
|𝑝|0 ⋅ |𝑞|0 ≔ |𝑝 ⋅ 𝑞|0, where (⋅) means the path concatenation. We also define |𝑝|−1

0 ≔ |𝑝−1|0 By
Proposition 2.1.2 we know immediately these operators fulfill the group axioms. ∎

Proposition 4.2.3 For 𝐴 : 𝒰● we have 𝜋𝑛(𝐴) = Ω𝑛(|𝐴|𝑛, |𝑎|𝑛) for 𝑛 ≥ 1.

Proof. We prove it by induction. For 𝑛 = 1 we show in general |Ω(𝐴, 𝑎)|𝑘 = Ω(|𝐴|𝑘+1, |𝑎|𝑘+1).
By definition we need to show |𝑎 = 𝑎|𝑘 ≃ (|𝑎|𝑘+1 = |𝑎|𝑘+1).
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We will use the so called encode-decode method to complete the proof. In general, we define
a whole type family code to describe the behavior of the type, on which it is very hard or im-
possible to do induction. Then we can find two sections encode and decode of the type family
and show they are quasi inverses.
We define code : |𝐴|𝑘+1 → |𝐴|𝑘+1 → 𝒰 with code(|𝑥|𝑘+1, |𝑦|𝑘+1) ≔ |𝑥 = 𝑦|𝑘. It is well-defined
because |𝑥 = 𝑦|𝑘 is also 𝑘 + 1-truncated, and we can use the universal property of truncations
to reduce the terms of |𝐴|𝑘+1.
Now we define the decode : code(𝑢, 𝑣) → (𝑢 = 𝑣), ∀𝑢, 𝑣 : |𝐴|𝑘+1 as decode(|𝑝|𝑘) ≔
(| − |𝑘+1)∗

(𝑝). Conversely we have a map encode : (𝑢 = 𝑣) → code(𝑢, 𝑣) by encode(𝑝) ≔
transport𝑢↦ code(𝑢,𝑣)(𝑝, 𝑟(𝑢)), where 𝑟 : ∏𝑢: |𝐴|𝑘+1

code(𝑢, 𝑢) is given by 𝑟(|𝑥|𝑘+1) ≔ |refl𝑥|𝑘 from
induction.
By construction and computation of transport we see that they are quasi inverses. When we
set 𝑢 = 𝑣 = |𝑎|𝑘+1 we get the desired result.
Finally suppose we have already |Ω𝑛(𝐴, 𝑎)|𝑘 = Ω𝑛(|𝐴|𝑛+𝑘, |𝑎|𝑛+𝑘), then

|Ω(Ω𝑛(𝐴, 𝑎))|𝑘 = Ω(|Ω𝑛(𝐴, 𝑎)|𝑘+1)

= Ω(Ω𝑛(|𝐴|𝑛+𝑘+1, |𝑎|𝑛+𝑘+1)) = Ω𝑛+1(|𝐴|𝑛+𝑘+1, |𝑎|𝑛+𝑘+1)
(4.2.1)

by induction hypothesis. The proposition follows by setting 𝑘 = 0. ∎
We prove an interesting theorem in traditional algebraic topology.

Theorem 4.2.4 (Eckmann-Hilton) For a pointed type (𝐴, 𝑎) the composition of higher paths
on Ω𝑛(𝐴, 𝑎), 𝑛 ≥ 2 is commutative. We conclude that the higher homotopy groups are always
abelian.

Proof. Consider the following diagram of paths:

𝑝

𝑞

𝑟

𝑠

𝛼 𝛽𝑎 𝑎 𝑎

where 𝑝, 𝑞, 𝑟, 𝑠 : 𝑎 = 𝑎. are 1-paths and 𝛼 : 𝑝 = 𝑞, 𝛽 : 𝑟 = 𝑠 are 2-paths. We use the so called
“wiskering” as a technique to define horizontal composition of 𝛼 ⋆ 𝛽 : 𝑝 ⋅ 𝑟 = 𝑞 ⋅ 𝑠.
First, we have 𝛼 ⋅𝑟 𝑟 : 𝑝 ⋅ 𝑟 = 𝑞 ⋅ 𝑟 by induction on 𝑟, we set 𝛼 ⋅𝑟 refl𝑎 ≔ lu−1

𝑝 ⋅ 𝛼 ⋅ ru𝑞 where lu𝑝

and ru𝑞 are defined in Proposition 2.1.2. We can define the left wiskering of 𝛽 as 𝑞 ⋅𝑙 𝛽 : 𝑞 ⋅ 𝑟 =
𝑞 ⋅ 𝑠. Induction on 𝑞, we set refl𝑎 ⋅𝑙 𝛽 ≔ lu−1

𝑟 ⋅ 𝛽 ⋅ ru𝑠. Finally, we define 𝛼 ⋆ 𝛽 ≔ (𝛼 ⋅𝑟 𝑟) ⋅ (𝑞 ⋅𝑙 𝛽),
which has the type 𝑝 ⋅ 𝑟 = 𝑞 ⋅ 𝑠.
Analogously we have another composition 𝛼 ⋆′ 𝛽 ≔ (𝑝 ⋅𝑙 𝛽) ⋅ (𝛼 ⋅𝑟 𝑠). We want to show the two
compositions agree with each other with a 3-path, namely 𝛼 ⋆ 𝛽 = 𝛼 ⋆′ 𝛽. This can be done by
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induction on 𝛼 and 𝛽 to reduce them into refl𝑝 and refl𝑟. A further induction on 𝑝 and 𝑟 reduce
everything to refl𝑎 and in this case we define reflrefl𝑎 ⋆ reflrefl𝑎 = reflrefl𝑎 ⋆′ reflrefl𝑎 ≔ reflreflrefl𝑎 .
Now back to our Ω2(𝐴, 𝑎) where 𝑝, 𝑞, 𝑟, 𝑠 ≔ refl𝑎. In this case

𝛼 ⋆ 𝛽

= (𝛼 ⋅𝑟 refl𝑎) ⋅ (refl𝑎 ⋅𝑙 𝛽)

= lu−1
refl𝑎 ⋅ 𝛼 ⋅ rurefl𝑎 ⋅ lu−1

refl𝑎 ⋅ 𝛽 ⋅ rurefl𝑎

= 𝛼 ⋅ 𝛽

(4.2.2)

since lurefl𝑎 = reflrefl𝑎 = rurefl𝑎  by path induction. Similarly 𝛼 ⋆′ 𝛽 = 𝛽 ⋅ 𝛼. In conclusion we have
𝛼 ⋅ 𝛽 = 𝛽 ⋅ 𝛼 the desired commutative property.
For 𝑛 ≥ 3, we can simply go one step inductively “higher” in the diagram, i.e. replace 𝑎 with
refl𝑎 etc. and the proof follows. ∎
We can prove many classical properties of homotopy groups.

Proposition 4.2.5 For 𝐴, 𝐵 : 𝒰● we have 𝜋𝑛(𝐴 × 𝐵) = 𝜋𝑛(𝐴) × 𝜋𝑛(𝐵).

Proof. The proof consists of two parts. We will show that Ω(𝐴 × 𝐵, (𝑎, 𝑏)) = Ω(𝐴, 𝑎) × Ω(𝐵, 𝑏)
at first. This is true using the path induction on products. By induction on 𝑛 we get Ω𝑛(𝐴 ×
𝐵, (𝑎, 𝑏)) = Ω𝑛(𝐴, 𝑎) × Ω𝑛(𝐵, 𝑏).
It remains to show that the 𝑛-truncation preserves products, then we have 𝜋𝑛(𝐴 × 𝐵) =
|Ω𝑛(𝐴, 𝑎) × Ω𝑛(𝐵, 𝑏)|0 = |Ω𝑛(𝐴, 𝑎)|0 × |Ω𝑛(𝐵, 𝑏)|0 = 𝜋𝑛(𝐴) × 𝜋𝑛(𝐵).
Let 𝐶 be an 𝑛-type, then 𝐵 → 𝐶 is also an 𝑛-type. We thus have

(|𝐴|𝑛 × |𝐵|𝑛 → 𝐶) ≃ (|𝐴|𝑛 → (|𝐵|𝑛 → 𝐶))

≃ (|𝐴|𝑛 → (𝐵 → 𝐶))

≃ (𝐴 → (𝐵 → 𝐶))

≃ (𝐴 × 𝐵 → 𝐶)

(4.2.3)

by Proposition 3.4.4. By universal property of truncations we thus have |𝐴|𝑛 × |𝐵|𝑛 ≃ |𝐴 × 𝐵|𝑛
as desired. ∎

Proposition 4.2.6 If 𝐴 : 𝒰● is an 𝑛-type, then ∀𝑘 > 𝑛 we have 𝜋𝑘(𝐴) = 1.

Proof. By definition of 𝑛-types we know immediately Ω𝑘(𝐴, 𝑎) is an (𝑛 − 𝑘)-type if 𝐴 is an 𝑛-
type. But (𝑛 − 𝑘) ≤ −1 and it’s inhabited by the reflexivity, hence it must be contractible, we
have then Ω𝑘(𝐴, 𝑎) = 1 and 𝜋𝑘(𝐴) = |1|0 = 1. ∎

Proposition 4.2.7 If 𝐴 : 𝒰● is 𝑛-connected then ∀𝑘 ≤ 𝑛 we have 𝜋𝑘(𝐴) = 1.
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Proof. Using Proposition 4.2.3 we know 𝜋𝑘(𝐴) = Ω𝑘(|𝐴|𝑘). Since 𝐴 is 𝑛-connected we have
|𝐴|𝑛 = 1 and since truncation is cumulative we have |𝐴|𝑘 = ‖𝐴|𝑛|𝑘 when 𝑘 ≤ 𝑛. Thus 𝜋𝑘(𝐴) =
Ω𝑘(1) = 1 as 1 is contractible. ∎

4.3 Homotopy group of CW-complexes
We now calculate homotopy groups of certain CW-complexes. An easy to handle example is
the sphere.

Proposition 4.3.1 If 𝑋 : 𝒰 is 𝑛-connected, then Σ𝑋 is 𝑛 + 1-connected.

Proof. We need to show Σ𝑋 → 1 is an (𝑛 + 1) connected map, i.e. |Σ𝑋|𝑛+1 is contractible. By the
definition we know that Σ𝑋 ≃ 1 ⊔𝑋 1. Since 1 is the only contractible type up to equivalence,
by Proposition 3.2.7 if 1 is also the pushout of 𝒟 : 1 ← |𝑋|𝑛+1 → 1 then we have 1 = |1 ⊔𝑋 1|.
First we need to verify 1 is a cocone. Now consider id : 1 → 1, it’s trivial that ∀𝑥 : |𝑋|𝑛+1, id(∗
) = id(∗) by refl∗. Let 𝐸 : cocone(𝒟) be an (𝑛 + 1)-type with 𝑝, 𝑞 : 1 → 𝐸. Since (1 → 𝐸) ≃ 𝐸 we
have now 𝑥, 𝑦 : 𝐸 and 𝑓 : |𝑋|𝑛+1 → (𝑥 = 𝑦) by expanding the definition of cocone. It remains
to show that (𝑥 = 𝑦)𝐸 ≃ (|𝑋|𝑛+1 → (𝑥 = 𝑦)) then we can define ℎ : 1 → 𝐸 just to be ℎ(∗) ≔ 𝑥,
this commutes thus with id and 𝑝, 𝑞.
But since 𝑋 is 𝑛-connected, then so is |𝑋|𝑛+1 as the truncation is cumulative. Now by
Proposition 3.4.7 ((|𝑋|)𝑛+1 → (𝑥 = 𝑦)) ≃ (𝑥 = 𝑦) because 𝐸 is an 𝑛 + 1-type and (𝑥 = 𝑦) is an
𝑛-type for all 𝑥, 𝑦 : 𝐸. ∎

Corollary 4.3.2 The 𝑛-th sphere 𝕊𝑛 is (𝑛 − 1)-connected.

Proof. We prove by induction on 𝑛. If 𝑛 = 2, we know that 𝕊0 is inhabited, thus |𝕊0|−1 is con-
tractible. Now suppose 𝕊𝑛 is (𝑛 − 1)-connected, we have 𝕊𝑛 = Σ𝕊𝑛−1 is 𝑛-connected by the
previous proposition. ∎

Corollary 4.3.3 𝜋𝑘(𝕊𝑛) = 1 for 𝑘 < 𝑛.

Proof. By combining Corollary 4.3.2 and Proposition 4.2.7. ∎
A non-trivial example is the fundamental group of the circle.

Theorem 4.3.4 𝜋1(𝕊1) = ℤ.

Proof. This is an instance of the encode-decode method. We will show a stronger result that
Ω(𝕊1) = ℤ, this also implies the higher homotopy group of 𝕊1 is trivial.
We will use the following definition of 𝕊1, a simple geometric proof shows it is equivalent to
Σ𝕊0.
• a point base : 𝕊1

• a path loop : base = base
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Now we define the universal cover of 𝕊1 to be a type family code : 𝕊1 → 𝒰 such that
code(base) = ℤ and code∗(loop) = ua(succ).
In order to prove (base = base) ≃ ℤ, it is better to consider all fibrations of the cover.
That means, we need to define a family of equivalences ∏𝑥:𝕊1(base = 𝑥) → code(𝑥) and
∏𝑥:𝕊1 code(𝑥) → (base = 𝑥) and apply it to base : 𝕊1.
With the computation rule of the transport functor, we can show that transportcode(loop, 𝑥) =
succ(𝑥) and transportcode(loop−1, 𝑥) = pred(𝑥) since succ and pred are quasi inverses.
We define encode : ∏𝑥:𝕊1(base = 𝑥) → code(𝑥) with encode(𝑥, 𝑝) ≔ transportcode(𝑝, 0). On the
other hand, we define decode : ∏𝑥:𝕊1 code(𝑥) → (base = 𝑥) by induction on 𝕊1, we define the
function loop− : code(base) → (base = 𝑥) as the power function with respect to the path con-
catenation.
We also need to find a path of loop− to itself that lies over loop, i.e. a path

transportdecode(loop, loop−) = loop− (4.3.1)

This is by computation on transport and the fact transportcode(loop−1) = pred.
We show ∀𝑥 : 𝕊1 and 𝑝 : base = 𝑥 we have decode𝑥(encode𝑥(𝑝)) = 𝑝. By path induction we
may assume 𝑝 ≔ reflbase, in this case we have encodebase(reflbase) = transport(reflbase, 0) = 0 and
decodebase(0) = reflbase by definition.
Now we show ∀𝑥 : 𝕊1 and 𝑐 : code(𝑥) we have encode𝑥(decode𝑥(𝑐)) = 𝑐. By induction on 𝕊1,
we give the case for 𝑥 ≔ base and the functoriality follows from the fact that ℤ is a set and the
induced path of loop is a 2-path on ℤ, which is of course the reflexivity.
In this case we need to show encodebase(decodebase(𝑛)) = 𝑛, ∀𝑛 ∈ ℤ. We do an induction on ℤ
and after case analysis and computation, we know this is true.
As from our construction, encodebase and decodebase preserves the group operations by sending
addition to concatenation and vice versa, hence 𝜋1(𝕊1) = ℤ as a group. ∎
Now we will turn to the general theory of cell complexes. A cell complex consists of 𝑛-dimen-
sional discs, which are als called cells, with their boundaries attached on the (𝑛 − 1)-cells. The
cell complex is finite in both senses that the dimension is finite and the number of 𝑛-cells for
each 𝑛 is also finite.
We can give a general schemata for finite cell complexes via higher inductive types.

Definition 4.3.5 Let 𝐴𝑖 be index types, a finite 𝑛-dimensional cell complex is an iterated
pushout in such diagram:

𝑓1 𝑓2 𝑓𝑖+1 𝑓𝑖+2

𝑋0 ≔ 𝐴0 𝑋1 … 𝑋𝑖 𝑋𝑖+1 … 𝑋𝑛

𝐴1 × 𝕊0 𝐴1 𝐴2 × 𝕊1 𝐴2 … 𝐴𝑖+1 × 𝕊𝑖 𝐴𝑖+1 𝐴𝑖+2 × 𝕊𝑖+1 𝐴𝑖+2 … 𝐴𝑛
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where 𝑋𝑛 denotes the 𝑛-skeleton of the complex, i.e. all cells under dimension 𝑛 and 𝑓𝑖 is the
product of attaching maps from the boundaries of 𝑛-cells onto 𝑛 − 1-skeleton.

Remark 4.3.6 A finite cell complex in HoTT can be presented as a higher inductive types, where
all 𝑛-cells are 𝑛-paths, and the type of 𝑛-path is the partition of the attaching map into source
and target. Concretely, a higher inductive type 𝑋 with:
• some points 𝑋0 : 𝐴0 → 𝑋
• some paths 𝑋1 : 𝐴1 → (𝑋0(𝑎) = 𝑋0(𝑏)), 𝑎, 𝑏 are related to the attaching map.

…
• some 𝑖-paths 𝑋𝑖 : 𝐴𝑖 → (𝑓𝑖(𝑋𝑖−1) = 𝑓 ′

𝑖 (𝑋𝑖−1)), 𝑓  produces a composition of 𝑖 − 1-paths.

…

We will see the 𝑛-th homotopy group of a cell complex only depends on its 𝑛 + 1-skeleton.

Proposition 4.3.7 Let 𝑋 be a finite cell complex, then 𝜋𝑛(𝑋) = 𝜋𝑛(𝑋𝑛+1).

Proof. By Proposition 4.2.3 we need to show Ω𝑛(|𝑋|𝑛) = Ω𝑛(|𝑋𝑛+1|𝑛). It suffices to show
|𝑋|𝑛 ≃ |𝑋𝑛+1|𝑛. We consider the following diagram.

𝑖
… |𝑋𝑛|𝑛 |𝑋𝑛+1|𝑛 |𝑋𝑛+2|𝑛

𝐴𝑛+1 × |𝕊𝑛|𝑛 𝐴𝑛+1 𝐴𝑛+2 × |𝕊𝑛+1|𝑛 𝐴𝑛+2

We know 𝕊𝑛+1 is 𝑛-connected by Corollary 4.3.2, thus |𝕊𝑛+1|𝑛 = 1. By definition, the pushout
of the diagram |𝑋𝑛+1|𝑛 ← 1 → 1 is the wedge sum |𝑋𝑛+1|𝑛 ∨ 1, which is equivalent to |𝑋𝑛+1|𝑛
since 1 is contractible. But all 𝐴𝑖s are finite, thus by universality we have 𝑖 : |𝑋𝑛+1|𝑛 → |𝑋𝑛+2|𝑛
an equivalence. Finally by inductively combining all equivalences we get |𝑋𝑛+1|𝑛 ≃ |𝑋|𝑛. ∎
We can also understand this property from the explicit definition of cell complexes as a higher
inductive type. After 𝑛-truncation all higher paths become trivial, which gives an intuitional
way to see the equivalence between the whole complex and the (𝑛 + 1)-skeleton.
In classical algebraic topology this proposition is proven using cellular approximation theo-
rem. But here things become natural from the definition as we have defined the 𝑛-truncation
somewhat like the postnikov section of a higher inductive type. At the same time, a big part of
the higher inductive types could be considered as a cell complex. This analogy is essential in
this synthetic homotopy theory.
An example of cell complexes is the torus 𝑇 2 defined by:
• a point base : 𝑇 2

• two paths 𝑝, 𝑞 : base = base
• a homotopy 𝑟 : 𝑝 ⋅ 𝑞 = 𝑞 ⋅ 𝑝
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This definition can be easily generalized to the compact surfaces with genus, which character-
ized all compact orientable 2-manifolds up to homotopy.

Definition 4.3.8 A compact 0-connected and orientable surface 𝑆(𝑔) with genus 𝑔 is generated
as the following higher inductive type:
• a point base : 𝑆(𝑔)
• some paths 𝑝𝑖 : base = base, ∀1 ≤ 𝑖 ≤ 2𝑔
• a homotopy rel : 𝑝1 ⋅ 𝑝2… ⋅ 𝑝2𝑔 = 𝑝2𝑔 ⋅ 𝑝2𝑔−1 ⋅ …𝑝1

This type definition may be simplified using a indexed type as the argument instead of giving
all paths, i.e. 1-cells explicitly. Note that the indexed type should not have a group structure, a
nice candidate will then be the finite set Fin in dependent type theory.

Theorem 4.3.9 𝜋1(𝑆(𝑔)) = 𝐺 ≔< 𝑎1, …, 𝑎2𝑔 | 𝑎1…𝑎2𝑔𝑎−1
1 …𝑎−1

2𝑔 >.

Proof. We prove the equivalence without the truncation. By definition we know that
Ω(𝑆(𝑔), base) = (base = base, reflbase). An induction on the loop space shows that it suffices to
define a function 𝑓 : Ω(𝑆(𝑔)) → 𝐺 which sends 𝑝𝑖 to 𝑎𝑖 and the homotopy rel to the relation
𝑎1…𝑎2𝑔𝑎−1

1 …𝑎−1
2𝑔 = 𝑒, which is equal to the equality 𝑎1…𝑎2𝑔 = 𝑎2𝑔…𝑎1 by group axioms.

By induction on 𝐺 we get a function 𝑔 : 𝐺 → Ω(𝑆(𝑔)) by sending 𝑎𝑖 to 𝑝𝑖 and the relation to the
constructor rel.
Clearly 𝑓  and 𝑔 are quasi inverses and they preserve the group operations canonically. ∎

Remark 4.3.10 To formalize this proof it needs actually some more constructions. We must
define the represented group precisely as a higher inductive type and use the encode-decode
method to define our map 𝑓 : Ω(𝑆(𝑔)) → list(𝐴) properly.

Of course when we consider the torus as a special case with genus 1, there is another better
characterization.

Corollary 4.3.11 𝜋1(𝑇 2) = ℤ × ℤ where 𝑇 2 ≔ 𝑆1 × 𝑆1 the torus.

Proof. By Proposition 4.2.5 and Theorem 4.3.4. ∎
A nice example of the non-orientable surface will definitely be ℝℙ2, which can be defined as
the following higher inductive type:
• a point base : ℝℙ2

• a path 𝑞 : base = base
• a homotopy 𝑟 : 𝑞 ⋅ 𝑞 = reflbase

Proposition 4.3.12 𝜋1(ℝℙ2) = 𝐶2
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Proof. Encode-decode method. This is completely analogous to the Theorem 4.3.4. In addition
that we will map code∗(𝑟) to the relation 12 ⋅ 12 = 02 and do some calculations on 2-paths. ∎

4.4 Stable homotopy and cohomology theory
A classical Result from Brown states that any reduced cohomology theory can be represented
by the homotopy classes to a concrete space(see [Hat02] 4E.1 for a proof). This motivates us to
define a cohomology theory in a synthetic way. Just like other results in HoTT, this theory is
independent of realizations.
We will use higher inductive types to define Eilenberg-MacLane spaces at first.

Definition 4.4.1 The Eilenberg-MacLane space 𝐾(𝐺, 1) for any group 𝐺 is defined by:
• a point base : 𝐾(𝐺, 1)
• a map bonq : 𝐺 → (base = base)
• a path unit : bonq(𝑒) = reflbase

• a dependent map homo : ∏𝑥,𝑦:𝐺(bonq(𝑥 ⋅ 𝑦) = bonq(𝑥) ⋅ bonq(𝑦))
• a dependent map inv : ∏𝑥:𝐴(bonq(𝑥−1) = bonq(𝑥)−1)
• a dependent map trunc : ∏𝑥,𝑦:𝐾(𝐺,1) ∏𝑝,𝑞:𝑥=𝑦 ∏𝑟,𝑠:𝑝=𝑞(𝑟 = 𝑠)

The last constructor ensures that 𝐾(𝐺, 1) is indeed an 1-type. The only thing we need to show
is the following lemma.

Lemma 4.4.2 𝜋1(𝐾(𝐺, 1)) = 𝐺

Proof. From [LF14]. We use the encode-decode method again. Define the type family code :
𝐾(𝐺, 1) → 𝒰 such that code(base) ≔ 𝐺 and transportcode(bonq(𝑥), 𝑦) = 𝑥 ⋅ 𝑦. The two sections
are given by

encode : ∏
𝑎:𝐾(𝐺,1)

(base = 𝑎) → code(𝑎)

encode𝑎(𝑝) ≔ transportcode(𝑝, 𝑒)

decode : ∏
𝑎:𝐾(𝐺,1)

code(𝑎) → (base = 𝑎)

decodebase(𝑥) ≔ bonq(𝑥)

(4.4.1)

The rest is just plain computation. The reader will immediately notice the analogous part of
the proof with Theorem 4.3.4. This is justified by Example 4.4.4. ∎
The general Eilenberg-MacLane space of degree 𝑛 is defined then inductively.

Definition 4.4.3 For an abelian group 𝐺 and 𝑛 ≥ 2, the Eilenberg-MacLane space 𝐾(𝐺, 𝑛) is
defined by:
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𝐾(𝐺, 𝑛 + 1) ≔ |Σ(𝐾(𝐺, 𝑛))|𝑛+1 (4.4.2)

Example 4.4.4 From the previous section we know that 𝐾(ℤ, 1) ≃ 𝕊1.

Proposition 4.4.5 For 𝑛 ≥ 1 the 𝐾(𝐺, 𝑛) we have defined is indeed an Eilenberg-MacLane
space, i.e. 𝜋𝑛(𝐾(𝐺, 𝑛)) = 𝐺 and 𝜋𝑘(𝐾(𝐺, 𝑛)) = 1 for 𝑘 ≠ 𝑛.

This proof of proposition will use the Freudental suspension theorem, which is proven using
encode-decode method.

Theorem 4.4.6 (Freudental suspension theorem) Let 𝑋 : 𝒰● be 𝑛-connected, then we have the
equivalence ∀𝑘 ≤ 2𝑛:

|𝑋|𝑘 ≃ |Ω(Σ𝑋)|𝑘 (4.4.3)

Proof of Proposition 4.4.5. For 𝑛 = 1, consider Lemma 4.4.2, it remains to show 𝜋𝑘(𝐾(𝐺, 1)) =
1, 𝑘 > 1, but this follows directly from Proposition 4.2.7 since 𝐾(𝐺, 1) is an 1-type.
Observe that 𝐾(𝐺, 1) is 0-connected since it has just a point base, thus 𝐾(𝐺, 𝑛) is 𝑛 − 1-con-
nected by Proposition 4.3.1, and by Proposition 4.2.7 𝜋𝑘(𝐾(𝐺, 𝑛)) = 1 for 𝑘 ≤ 𝑛 − 1. From
then definition we know that 𝐾(𝐺, 𝑛) is an 𝑛-type, thus 𝜋𝑘(𝐾(𝐺, 𝑛)) = 1 for 𝑘 > 𝑛. We show
𝜋𝑛(𝐾(𝐺, 𝑛)) = 𝐺 by induction.
We have

Ω𝑛+1(𝐾(𝐺, 𝑛 + 1)) = Ω𝑛+1(|Σ(𝐾(𝐺, 𝑛))|𝑛+1)

Ω𝑛(|ΩΣ(𝐾(𝐺, 𝑛))|𝑛) = Ω𝑛(|𝐾(𝐺, 𝑛)|𝑛)
(4.4.4)

by Proposition 4.2.3 and the Freudental suspension theorem respectively. ∎

Definition 4.4.7 Let 𝑛 ≥ 1, the reduced cohomology 𝐻𝑛(𝐴, 𝐺) for a type 𝐴 : 𝒰● with coeffi-
cients in 𝐺 is defined by:

𝐻𝑛(𝐴, 𝐺) ≔ |(𝐴 ∗ → 𝐾(𝐺, 𝑛))|0 (4.4.5)

Proposition 4.4.8 𝐻𝑛(𝕊𝑛, 𝐺) = 𝐺 and 𝐻𝑘(𝕊𝑘, 𝐺) = 1 for 𝑘 ≠ 𝑛.

Proof. By definition we get 𝐻𝑘(𝕊𝑛, 𝐺) = |𝕊𝑛 ∗ → 𝐾(𝐺, 𝑘)|0 = |Ω𝑛(𝐾(𝐺, 𝑘))|0. The statement
follows from the definition of Eilenberg-MacLane space. ∎
To compute more complicated cohomology, one must generalize the above construction and
dive into the calculation of spectral sequences. The Freudental suspension theorem is a good
start point, but we still await a fully operational stable category in HoTT.
The discussion is beyond the scope of this thesis and we will end the chapter here.
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