
Week 5: Partition of unity
Cheni Yuki Yang

1. Tietze extension theorem
The proof of this theorem is very constructive and really a hidden gem in general
topology.

1.1. Definition
A topological space 𝑋 is normal if for 𝐻 ⊂ 𝑉 ⊂ 𝑋 with 𝐻 closed and 𝑉  open, there
is an open 𝑈  and closed 𝑍 with 𝐻 ⊂ 𝑈 ⊂ 𝑍 ⊂ 𝑉 ⊂ 𝑋.

It’s immediate to see if 𝑌 ⊂ 𝑋 is an open subspace with 𝑋 normal, then 𝑌  is also
normal.

We firstly prove an important lemma on compact Hausdorff spaces(note this is not
true for locally Hausdorff spaces, as they are not normal!)

1.2. Urysohn’s lemma
Let 𝑋 be a normal space, 𝐴1 and 𝐴2 be disjoint closed subsets in 𝑋. Then there
exists a continuous function 𝑓 : 𝑋 → [0, 1] with 𝑓|𝐴1

= 0 and 𝑓|𝐴2
= 1.

1.2.1. Proof
Consider the chain 𝐴1 ⊂ 𝑋 − 𝐴2 ⊂ 𝐴2. Let 𝑟 ≔ 𝑠1

2𝑠2 < 1 with 𝑠1, 𝑠2 positive integers.
Inductively by normality of 𝑋 we construct a chain of sets 𝑈(𝑟) and 𝑍(𝑟) such that

𝐴 ⊂ 𝑈(𝑟) ⊂ 𝑍(𝑟) ⊂ 𝑋 − 𝐴2

𝑍(𝑟) ⊂ 𝑈(𝑟′), 𝑟 < 𝑟′

This goes in detail as: suppose we have constructed all 𝑈( 𝑠1
2𝑠2 ) and 𝑍( 𝑠1

2𝑠2 ) for 1 ≤
𝑠1 ≤ 2𝑠2−1, then we may construct

𝑍( 𝑠1
2𝑠2

) ⊂ 𝑈(2𝑠1 + 1
2𝑠2+1 ) ⊂ 𝑍(2𝑠1 + 1

2𝑠2+1 )

𝑈( 𝑠1
2𝑠2+1) ⊂ 𝑍( 𝑠1

2𝑠2+1) ⊂ 𝑈( 𝑠1
2𝑠2

)

We define 𝑓(𝑥) = 1 for 𝑥 ∉ 𝑈(𝑟) for any 𝑟, otherwise 𝑓(𝑥) = inf{𝑟 : 𝑥 ∈ 𝑈(𝑟)}. By
construction it’s clear 𝑓(𝐴1) = 0 and 𝑓(𝐴2) = 1. It remains to show 𝑓 is continuous.
For this we make two observations:
1. If 𝑦 ∉ 𝑈(𝑠), then 𝑦 ∉ 𝑈(𝑟) for 𝑠 < 𝑟, thus 𝑓(𝑦) = inf{𝑟 : 𝑦 ∈ 𝑈(𝑟)} ≥ 𝑠.
2. If 𝑦 ∈ 𝑍(𝑠), then 𝑦 ∈ 𝑈(𝑟) for 𝑟 > 𝑠, thus 𝑓(𝑦) = inf{𝑟 : 𝑥 ∈ 𝑈(𝑟)} ≤ 𝑠.

Now by the classification of opens in ℝ we may pick (𝑝, 𝑞) ⊂ [0, 1] and 𝑥 ∈ 𝑓−1(𝑝, 𝑞).
By construction we find 𝑟1 = 𝑎1

2𝑏1  and 𝑟2 = 𝑎2
2𝑏2  such that 𝑝 < 𝑟1 < 𝑓(𝑥) < 𝑟2 < 𝑞. We

thus know 𝑥 ∈ 𝑈(𝑟2) − 𝑍(𝑟1) ≕ 𝑉 . We want to show this is in 𝑓−1(𝑝, 𝑞), hence it is
open. Now as 𝑈(𝑟2) ⊂ 𝑍(𝑟2), we have 𝑓(𝑉 ) ≤ 𝑟2 < 𝑞 and as 𝑍(𝑟1) ⊂ 𝑈(𝑟2) we have
𝑓(𝑉 ) ≥ 𝑟1 > 𝑝. This finishes the proof. ■
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1.3. Tietze extension
Let 𝑋 be a normal space and 𝑍 ⊂ 𝑋 closed, assume 𝑓 : 𝑍 → ℝ𝑛 continuous, then
there exists a function 𝑔 : 𝑋 → ℝ𝑛 such that 𝑔|𝑍 = 𝑓 .

1.3.1. Proof
WLOG we assume 𝑛 = 1. Let 𝑐0 ≔ sup{|𝑓(𝑥)| : 𝑥 ∈ 𝑍}, 𝐸0 ≔ {𝑥 ∈ 𝑍 : 𝑓(𝑥) ≥ 𝑐0

3 }
and 𝐹0 ≔ {𝑥 ∈ 𝑍 : 𝑓(𝑥) ≤ −𝑐0

3 }. As 𝑓 continuous, both 𝐸0 and 𝐹0 are closed. By
Urysohn’s lemme(and scaling) we construct 𝑓0𝑋 → ℝ such that 𝑓0(𝐸0) = 𝑐0

3 , 𝑓0(𝐹0) =
−𝑐0

3  and 𝑓0(𝑋) ⊂ [−𝑐0
3 , 𝑐0

3 ].

Inductively we construct a sequence of functions 𝑓𝑛 such that |𝑓𝑛(𝑥)| ≤ 2𝑛

3𝑛+1 𝑐0 thus
|𝑓(𝑥) − ∑𝑛

𝑖=0 𝑓𝑖(𝑥)| ≤ 2𝑛+1

3𝑛+1 𝑐0, 𝑥 ∈ 𝑍. This is possible as we can define 𝑐𝑛, 𝐸𝑛 and 𝐹𝑛
like before for function 𝑓 − ∑𝑛−1

𝑖=0 𝑓𝑖.

Now consider 𝑔𝑛 ≔ ∑𝑛
𝑖=0 𝑓𝑖 the partial sum, we have

|𝑔𝑛 − 𝑔𝑚| = | ∑
𝑛

𝑖=𝑚
𝑓𝑖| ≤ ∑

𝑛

𝑖=𝑚

2𝑖

3𝑖+1 𝑐0 ≤ 2𝑚

3𝑚 𝑐0

Hence this sequence is a Cauchy sequence and as ℝ complete, it converges uniformly
to 𝑔 : 𝑋 → ℝ continuous. By construction |𝑓 − 𝑔𝑛| converges to 0 on 𝑍, thus 𝑔|𝑍 = 𝑓 .
■

2. Existence of partition of unity
The partition of unity exists for any paracompact Hausdorff space. We will prove this
substantially.

2.1. Lemma
Let 𝑋 be a topological space and {𝑈𝑖}𝑖∈𝐼 be an open cover. Suppose we have a locally
finite refinement {𝑉𝑗}𝑗∈𝐽

 with 𝜑 : 𝐽 → 𝐼 , then {𝑊𝑖}𝑖∈𝑋 defined as

𝑊𝑖 ≔ ⋃
𝑗∈𝜑−1(𝑖)

𝑉𝑗

is still a locally finite refinement of {𝑈𝑖}.

2.1.1. Proof
By construction 𝑊𝑖 is indeed in 𝑈𝑖, hence a refinement. We need to show it’s locally
finite. Pick 𝑥 ∈ 𝑋, by assumption {𝑉𝑗} is locally finite and we have an open
neighbourhood 𝑈𝑥 for 𝑥 such that there exists 𝐾 ⊂ 𝐽  finite and ∀𝑗 ∉ 𝐽,𝑈𝑥 ∩ 𝑉𝑗 = ∅.
Thus if 𝑖 ∉ 𝜑(𝐾), then 𝑈𝑥 ∩ 𝑊𝑖 = ∅, and as 𝜑(𝐾) finite, this concludes the proof. ■

2.2. Shrinking Lemma
Let 𝑋 be a normal topological space and {𝑈𝑖} a locally finite open cover, then there
exists an open cover {𝑉𝑖} such that 𝑉𝑖 ⊂ 𝑈𝑖.
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2.2.1. Proof
We want to apply Zorn’s lemma. Let 𝑆 be the set of collections 𝒲𝐽 = {𝑊𝑖,𝐽} of open
sets such that for 𝐽 ⊂ 𝐼 we have 𝑊𝑖,𝐽 ⊂ 𝑈𝑖, 𝑖 ∈ 𝐽  and 𝑊𝑖,𝐽 = 𝑈𝑖, 𝑖 ∈ 𝐼 − 𝐽 , and 𝒲𝐽  is
an open cover of 𝑋. 𝑆 is nonempty since 𝑋 is normal, we can pick any index in 𝐼 to
perform a refinement. Let’s define a partial order ≤ on 𝑆 as 𝒲𝐽 ≤ 𝒲𝐾 if 𝐽 ⊂ 𝐾 and
𝑊𝑖,𝐽 = 𝑊𝑖,𝐾 for each 𝑖 ∈ 𝐽 .

Let 𝑇  be a totally ordered subset of 𝑆. Define an index set 𝐾 = ⋃{𝐽 : 𝒲𝐽 ∈ 𝑇} and
the collection 𝒲𝐾 as ∀𝑖 ∈ 𝐾,𝑊𝑖,𝐾 = 𝑊𝑖,𝐽  if 𝑖 ∈ 𝐽 . Since 𝑇  is totally ordered, this is
well-defined and 𝑊𝑖,𝐾 ⊂ 𝑈𝑖, 𝑖 ∈ 𝐾. Moreover, 𝒲𝐾 is an open cover of 𝑋. Since {𝑈𝑖} is
locally finite, 𝒲𝐾 is locally finite and at each point 𝑥 ∈ 𝑋 there exists {𝑖1,…, 𝑖𝑘} with
{𝑖1,…, 𝑖𝑘} ⊂ 𝐾 and 𝑥 ∈ ⋃𝑖∈𝐾 𝑊𝑖,𝐾 .

By Zorn’s lemma 𝑆 has a maximal element 𝒱 = {𝑉𝑖}. The indexing set of 𝒱 must be
𝐼 otherwise we can always enlarge the indexing set using the normality of 𝑋. Hence
by construction this is our searching open cover. ■

2.3. Existence
By paracompactness of 𝑋, each open cover {𝑈𝑖} has a locally finite refinement. By
previous lemma we may assume this refinement has the same index. Now it suffices to
show every locally finite open cover has a partition of unity.

As paracompact Hausdorff space is normal, we apply the shrinking lemma twice to
get two open covers {𝑉𝑖} and {𝑊𝑖} such that

𝑊𝑖 ⊂ 𝑊𝑖 ⊂ 𝑉𝑖 ⊂ 𝑉𝑖 ⊂ 𝑈𝑖

This allows us to apply Urysohn’s lemma on two disjoint closed subsets 𝑊𝑖 and 𝑋 −
𝑉𝑖 to construct a continuous function ℎ𝑖 : 𝑋 → [0, 1] such that ℎ𝑖(𝑊𝑖) = 1 and
ℎ𝑖(𝑋 − 𝑉𝑖) = 0, hence supp(ℎ𝑖) ⊂ 𝑉𝑖 ⊂ 𝑈𝑖.

It remains to normalize these functions. We set ℎ ≔ ∑𝑖∈𝐼 ℎ𝑖 a finite sum at each
point due to the local finiteness of the cover. Moreover ∀𝑥 ∈ 𝑋, ℎ(𝑥) ≠ 0 since {𝑊𝑖} is
an open cover of 𝑋 and ℎ𝑖(𝑊𝑖) = 1.

Now set 𝑓𝑖 ≔ ℎ𝑖
ℎ  and ∑𝑖∈𝐼 𝑓𝑖 = 1. Thus {𝑓𝑖} is a partition of unity. ■

2.4. Local finiteness
Locally finiteness is actually not crucial in the proof, as suggested by the following
lemma:

2.4.1. Theorem(Mather)
Let {𝑓𝑖}𝑖∈𝐼 be a partition of unity subordinated to {𝑈𝑖}𝑖∈𝐼 , then there is a locally
finite partition of unity {𝑔𝑖}𝑖∈𝐼 subordinated to {𝑉𝑖}𝑖∈𝐼 such that {𝑉𝑖} is a refinement
of {𝑈𝑖}.
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