Week 5: Partition of unity

Cheni Yuki Yang

1. Tietze extension theorem

The proof of this theorem is very constructive and really a hidden gem in general topology.

1.1. Definition

A topological space X is normal if for $H \subset V \subset X$ with H closed and V open, there is an open U and closed Z with $H \subset U \subset Z \subset V \subset X$.

It's immediate to see if $Y \subset X$ is an open subspace with X normal, then Y is also normal.

We firstly prove an important lemma on compact Hausdorff spaces(note this is not true for locally Hausdorff spaces, as they are not normal!)

1.2. Urysohn's lemma

Let X be a normal space, A_1 and A_2 be disjoint closed subsets in X. Then there exists a continuous function $f: X \to [0, 1]$ with $f|_{A_1} = 0$ and $f|_{A_2} = 1$.

1.2.1. Proof

Consider the chain $A_1 \subset X - A_2 \subset A_2$. Let $r \coloneqq \frac{s_1}{2^{s^2}} < 1$ with s_1, s_2 positive integers. Inductively by normality of X we construct a chain of sets U(r) and Z(r) such that

$$\begin{split} A \subset U(r) \subset Z(r) \subset X - A_2 \\ Z(r) \subset U(r'), r < r' \end{split}$$

This goes in detail as: suppose we have constructed all $U(\frac{s_1}{2^{s_2}})$ and $Z(\frac{s_1}{2^{s_2}})$ for $1 \leq s_1 \leq 2^{s_2-1}$, then we may construct

$$\begin{split} Z\Big(\frac{s_1}{2^{s_2}}\Big) &\subset U\Big(\frac{2s_1+1}{2^{s_2+1}}\Big) \subset Z\Big(\frac{2s_1+1}{2^{s_2+1}}\Big) \\ U\Big(\frac{s_1}{2^{s_2+1}}\Big) &\subset Z\Big(\frac{s_1}{2^{s_2+1}}\Big) \subset U\Big(\frac{s_1}{2^{s_2}}\Big) \end{split}$$

We define f(x) = 1 for $x \notin U(r)$ for any r, otherwise $f(x) = \inf\{r : x \in U(r)\}$. By construction it's clear $f(A_1) = 0$ and $f(A_2) = 1$. It remains to show f is continuous. For this we make two observations:

1. If $y \notin U(s)$, then $y \notin U(r)$ for s < r, thus $f(y) = \inf\{r : y \in U(r)\} \ge s$. 2. If $y \in Z(s)$, then $y \in U(r)$ for r > s, thus $f(y) = \inf\{r : x \in U(r)\} \le s$.

Now by the classification of opens in \mathbb{R} we may pick $(p,q) \subset [0,1]$ and $x \in f^{-1}(p,q)$. By construction we find $r_1 = \frac{a_1}{2^{b_1}}$ and $r_2 = \frac{a_2}{2^{b_2}}$ such that $p < r_1 < f(x) < r_2 < q$. We thus know $x \in U(r_2) - Z(r_1) =: V$. We want to show this is in $f^{-1}(p,q)$, hence it is open. Now as $U(r_2) \subset Z(r_2)$, we have $f(V) \leq r_2 < q$ and as $Z(r_1) \subset U(r_2)$ we have $f(V) \geq r_1 > p$. This finishes the proof.

1.3. Tietze extension

Let X be a normal space and $Z \subset X$ closed, assume $f : Z \to \mathbb{R}^n$ continuous, then there exists a function $g : X \to \mathbb{R}^n$ such that $g|_Z = f$.

1.3.1. Proof

WLOG we assume n = 1. Let $c_0 := \sup\{|f(x)| : x \in Z\}$, $E_0 := \{x \in Z : f(x) \ge \frac{c_0}{3}\}$ and $F_0 := \{x \in Z : f(x) \le -\frac{c_0}{3}\}$. As f continuous, both E_0 and F_0 are closed. By Urysohn's lemme(and scaling) we construct $f_0X \to \mathbb{R}$ such that $f_0(E_0) = \frac{c_0}{3}, f_0(F_0) = -\frac{c_0}{3}$ and $f_0(X) \subset \left[-\frac{c_0}{3}, \frac{c_0}{3}\right]$.

Inductively we construct a sequence of functions f_n such that $|f_n(x)| \leq \frac{2^n}{3^{n+1}}c_0$ thus $|f(x) - \sum_{i=0}^n f_i(x)| \leq \frac{2^{n+1}}{3^{n+1}}c_0, x \in \mathbb{Z}$. This is possible as we can define c_n, E_n and F_n like before for function $f - \sum_{i=0}^{n-1} f_i$.

Now consider $g_n := \sum_{i=0}^n f_i$ the partial sum, we have

$$|g_n - g_m| = |\sum_{i=m}^n f_i| \le \sum_{i=m}^n \frac{2^i}{3^{i+1}} c_0 \le \frac{2^m}{3^m} c_0$$

Hence this sequence is a Cauchy sequence and as \mathbb{R} complete, it converges uniformly to $g: X \to \mathbb{R}$ continuous. By construction $|f - g_n|$ converges to 0 on Z, thus $g|_Z = f$.

2. Existence of partition of unity

The partition of unity exists for any paracompact Hausdorff space. We will prove this substantially.

2.1. Lemma

Let X be a topological space and $\{U_i\}_{i \in I}$ be an open cover. Suppose we have a locally finite refinement $\{V_j\}_{i \in J}$ with $\varphi: J \to I$, then $\{W_i\}_{i \in X}$ defined as

$$W_i \coloneqq igcup_{j\in arphi^{-1}(i)} V_j$$

is still a locally finite refinement of $\{U_i\}$.

2.1.1. Proof

By construction W_i is indeed in U_i , hence a refinement. We need to show it's locally finite. Pick $x \in X$, by assumption $\{V_j\}$ is locally finite and we have an open neighbourhood U_x for x such that there exists $K \subset J$ finite and $\forall j \notin J, U_x \cap V_j = \emptyset$. Thus if $i \notin \varphi(K)$, then $U_x \cap W_i = \emptyset$, and as $\varphi(K)$ finite, this concludes the proof.

2.2. Shrinking Lemma

Let X be a normal topological space and $\{U_i\}$ a locally finite open cover, then there exists an open cover $\{V_i\}$ such that $\overline{V_i} \subset U_i$.

2.2.1. Proof

We want to apply Zorn's lemma. Let S be the set of collections $\mathcal{W}_J = \{W_{i,J}\}$ of open sets such that for $J \subset I$ we have $\overline{W_{i,J}} \subset U_i, i \in J$ and $W_{i,J} = U_i, i \in I - J$, and \mathcal{W}_J is an open cover of X. S is nonempty since X is normal, we can pick any index in I to perform a refinement. Let's define a partial order \leq on S as $\mathcal{W}_J \leq \mathcal{W}_K$ if $J \subset K$ and $W_{i,J} = W_{i,K}$ for each $i \in J$.

Let T be a totally ordered subset of S. Define an index set $K = \bigcup \{J : \mathcal{W}_J \in T\}$ and the collection \mathcal{W}_K as $\forall i \in K, W_{i,K} = W_{i,J}$ if $i \in J$. Since T is totally ordered, this is well-defined and $\overline{W_{i,K}} \subset U_i, i \in K$. Moreover, \mathcal{W}_K is an open cover of X. Since $\{U_i\}$ is locally finite, \mathcal{W}_K is locally finite and at each point $x \in X$ there exists $\{i_1, ..., i_k\}$ with $\{i_1, ..., i_k\} \subset K$ and $x \in \bigcup_{i \in K} W_{i,K}$.

By Zorn's lemma S has a maximal element $\mathcal{V} = \{V_i\}$. The indexing set of \mathcal{V} must be I otherwise we can always enlarge the indexing set using the normality of X. Hence by construction this is our searching open cover.

2.3. Existence

By paracompactness of X, each open cover $\{U_i\}$ has a locally finite refinement. By previous lemma we may assume this refinement has the same index. Now it suffices to show every locally finite open cover has a partition of unity.

As paracompact Hausdorff space is normal, we apply the shrinking lemma twice to get two open covers $\{V_i\}$ and $\{W_i\}$ such that

$$W_i \subset \overline{W_i} \subset V_i \subset \overline{V_i} \subset U_i$$

This allows us to apply Urysohn's lemma on two disjoint closed subsets $\overline{W_i}$ and $X - V_i$ to construct a continuous function $h_i : X \to [0, 1]$ such that $h_i(\overline{W_i}) = 1$ and $h_i(X - V_i) = 0$, hence $\operatorname{supp}(h_i) \subset \overline{V_i} \subset U_i$.

It remains to normalize these functions. We set $h \coloneqq \sum_{i \in I} h_i$ a finite sum at each point due to the local finiteness of the cover. Moreover $\forall x \in X, h(x) \neq 0$ since $\{W_i\}$ is an open cover of X and $h_i(W_i) = 1$.

Now set $f_i := \frac{h_i}{h}$ and $\sum_{i \in I} f_i = 1$. Thus $\{f_i\}$ is a partition of unity.

2.4. Local finiteness

Locally finiteness is actually not crucial in the proof, as suggested by the following lemma:

2.4.1. Theorem(Mather)

Let $\{f_i\}_{i \in I}$ be a partition of unity subordinated to $\{U_i\}_{i \in I}$, then there is a locally finite partition of unity $\{g_i\}_{i \in I}$ subordinated to $\{V_i\}_{i \in I}$ such that $\{V_i\}$ is a refinement of $\{U_i\}$.