
Week 4: Metrizable manifolds and
distributions

Cheni Yuki Yang

1. Distributions and foliations
A distribution 𝐷 is a subbundle of the tangent bundle T𝑀  for a manifold 𝑀 .

1.1. Properties of a distribution
A distribution 𝐷 is said to be involutive iff for any section 𝑋,𝑌 ∈ Γ(𝐷) we have
[𝑋, 𝑌 ] ∈ Γ(𝐷), where [., .] is on the total tangent bundle defined.

This condition is purely algebraic, but a very cool theorem gives it a geometric
interpretation:

1.1.1. Theorem(Frobenius)
A distribution 𝐷 is involutive iff it’s integrable iff it’s complete integrable

1.1.1.1. Proof
s. [[Lee12], Theorem 19.12].

One direction from involution to complete integrable was already shown in the
exercise. However we still need to give the precise definition of integrability.

1.1.2. Definition
A immersed manifold 𝑁 ≠ ∅ in 𝑀  is called a integral manifold of distribution 𝐷 if
𝑇𝑝𝑁 = 𝐷𝑝, ∀𝑝 ∈ 𝑁 .

1.1.3. Definition
A distribution 𝐷 is called integrable if ∀𝑝 ∈ 𝑀 , there is a integral manifold 𝑁  of 𝐷
with 𝑝 ∈ 𝑁 .

1.1.4. Remark
Not every distribution is integrable. For a counterexample, consider the distribution
in ℝ3 linearly spanned by

𝑋 = 𝜕
𝜕𝑥

+ 𝑦 𝜕
𝜕𝑧
, 𝑌 = 𝜕

𝜕𝑦

It cannot have a integral manifold at the origin because its twisting nature.

People may think the integral manifold as finding an inverse operation of
differential(which is a tangential space) on a manifold.

1.1.5. Definition
A distribution 𝐷 of rank 𝑘 is completely integrable if there exists a chart (𝑈, 𝜑) for
every 𝑝 ∈ 𝑀  such that 𝜑(𝑈) is a cube in ℝ𝑛, and after 𝐷𝜑, 𝐷 is generated only by
first 𝑘 standard basis 𝜕

𝜕𝑥1
,…, 𝜕

𝜕𝑥𝑘
.
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In other word, Lie bracket measures the failure of the integral of 𝐷 being a euclidean
space. As we have a canonical commutative family of sections on ℝ𝑛 which is { 𝜕

𝜕𝑥𝑖
}.

If 𝐷 is involutive, i.e. Lie bracket is closed in 𝐷, then by Frobenius 𝐷 is complete
integrable, thus we can always make a chart to “convert” 𝐷 into ℝ𝑛.

Distribution has also a deep connection with phase spaces in physics. The bridge
between them is so called simplectic geometry. A detailed introduction is beyond the
scope. The reader can find all details in [HZ12].

1.2. Foliations

1.2.1. Definition
Let ℐ be an indexed family, we say {𝑁𝑖}𝑖∈ℐ is a 𝑘-foliation of the manifold 𝑀𝑛 if each
𝑁𝑖 is a nonempty connected immersed 𝑘-submanifold of 𝑀  such that
1. 𝑁𝑖 ∩ 𝑁𝑗 = ∅, 𝑖 ≠ 𝑗
2. ⋃𝑖∈ℐ𝑁𝑖 = 𝑀

1.2.2. Theorem(Global Frobenius)
Let 𝐷 be an involutive distribution of 𝑀 . Then the collection of maximally connected
integral manifolds of 𝐷 forms a foliation of 𝑀

It’s in general not so easy to produce a foliation. For that, one needs to think about
distributions as the kernel of 1-forms and uses contact geometry techniques. Those
who have interests may search for Reeb foliations.

2. Manifolds are metrizable
2.1. Smooth case

2.1.1. Theorem(Whitney Embedding)
Let 𝑀  be a smooth manifold of dimension 𝑛, then it can be smoothly embedded into
ℝ2𝑛+1.

2.1.1.1. Remark
The best case is in general ℝ2𝑛, of which we need to use foliation to prove. For
example, ℝℙ2 cannot be embedded into ℝ3.

2.1.1.2. Proof
Hard theorem, but for compact manifolds we can prove it relatively easily.

We only show 𝑀  can be embedded into a sufficiently large euclidean space ℝ𝑁 .

Suppose 𝑀 = 𝑈1 ∪… ∪ 𝑈𝑘 be an open cover of charts (𝑈𝑖, 𝜑𝑖). As 𝑀  locally compact,
we may choose a finite open cover {𝑉𝑗} of 𝑀  such that 𝑉𝑗 ⊂ 𝑈𝑗. Now let 𝜆𝑗 : 𝑀 → ℝ
be a smooth bump function on 𝑉𝑗, i.e. 𝜆𝑗|𝑉𝑗 = 1 and supp(𝜆𝑗) ⊂ 𝑈𝑗. We define

𝜓𝑗 : 𝑀 → ℝ𝑛, 𝑝 ↦ {𝜆𝑗(𝑝)𝜑𝑗(𝑝) if 𝑝 ∈ 𝑈𝑗0 else
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and set 𝜃 = ∏𝑘
𝑖=1 𝜓𝑖 ×∏

𝑘
𝑖=1 𝜆𝑖 : 𝑀 → ℝ𝑘𝑛+𝑘. We show 𝜃 is an embedding.

It’s an immersion: suppose 𝜃∗,𝑝(𝑣) = 0, then there’s a 𝑗 with 𝑝 ∈ 𝑉𝑗, thus 𝜓𝑗(𝑝) =
𝜑𝑗(𝑝) and 𝜑𝑗,∗,𝑝(𝑣) = 0, but 𝜑𝑗,∗ is an isomorphism, so 𝑣 = 0.

It’s injective: Suppose 𝜃(𝑝) = 𝜃(𝑞), then there’s a 𝑗 with 𝑝 ∈ 𝑉𝑗 and 𝜆𝑗(𝑝) = 𝜆𝑗(𝑞),
thus 𝜑𝑗(𝑝) = 𝜑𝑗(𝑞), but 𝜑𝑗 is a chart, hence 𝑝 = 𝑞.

A complete proof can be found in [[Lee12], Theorem 6.15].

2.1.2. Corollary
Every smooth manifold is metrizable.

2.1.2.1. Proof
By choosing an embedding 𝑖 : 𝑀 ↪ ℝ2𝑛+1, we can get a metric on 𝑖(𝑀) induced by
euclidean metric. We define the metric on 𝑀  by setting 𝑑(𝑎, 𝑏) = 𝑑(𝑖(𝑎), 𝑖(𝑏)), 𝑎, 𝑏 ∈
𝑀 , since 𝑖 injective, this is a metric.

Alternatively we can firstly define a Riemannian metric ⟨., .⟩ on 𝑀  as mentioned in
week 3. The existence of a Riemannian metric is a direct consequence of partition of
ones. We define the distance between 𝑎, 𝑏 ∈ 𝑀  to be

𝑑(𝑎, 𝑏) ≔ inf
𝛾:𝑎→𝑏

𝑙(𝛾)

where 𝛾 is a piecewise smooth curve in 𝑀  connecting 𝑎 and 𝑏, and the length is
defined to be

𝑙(𝛾) = ∫
𝑏

𝑎
√⟨𝛾′(𝑠),𝛾′(𝑠)⟩𝑑𝑠

Since the length is non-negative, this infimum exists. Man verifies this is indeed a
metric, fulfilling the triangle inequality.

2.2. General case
It turns out that every topological manifold is metrizable. The proof is a direct
consequence of Urysohn’s metrization theorem, whose idea is also finding an
embedding into ℝ𝑁 .

2.2.1. Theorem(Urysohn)
Every second-countable regular Hausdorff space is metrizable.

For a proof, see this nLab page: https://ncatlab.org/nlab/show/Urysohn+
metrization+theorem.

2.2.2. Easy topological fact
Locally compact Hausdorff spaces are regular.
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