
Week 3: Tangent spaces and vector bundles
Cheni Yuki Yang

1. Construct vector bundles
1.1. Pullback bundles
Pullback is such an important construction in general mathematics, that if people
have constructed a new mathematical object, one of the first natural question would
be: “How does it behave under pulling back?”

Luckily, the pullback of vector bundle is still a vector bundle.

Let 𝑓 : 𝑋 → 𝑌  smooth, 𝜋 : 𝐸 → 𝑌  a vector bundle on 𝑌 , then we can define the
pullback bundle 𝑓∗𝐸 as

𝜋
𝑓

𝑓∗𝐸 𝐸

𝑋 𝑌

By exercise 1 of sheet 2, this is indeed a vector bundle on 𝑋.

A nice property of pullback is that it preserves the direct sum, i.e.

𝑓∗(𝐸1 ⊕𝐸2) = 𝑓∗(𝐸1) ⊕ 𝑓∗(𝐸2)

1.2. Tensor product
In the categorical language, pullback is a limit and tensor product is a colimit. The
category of vector spaces on a field 𝑘 admits finite limits and colimits, this leads us to
the following construction.

Consider 𝐸1 and 𝐸2 two vector bundles on the same base space 𝐵. Like the Whitney
sum, under finer trivialization covers the fiberwise tensor product 𝐸1,𝑝 ⊗𝐸2,𝑝 induces
a global vector bundle 𝐸1 ⊗𝐸2, the tensor product of vector bundles.

For line bundles, there is even a simpler discription: Consider the transition maps 𝑔𝑖𝑗
and 𝑔′𝑖𝑗 of 𝐸1 and 𝐸2 respectively under suitable restriction, the unique vector bundle
𝐸1 ×𝐸2 is given by transition functions 𝑔𝑖𝑗 ⋅ 𝑔′𝑖𝑗.

With this construction we can easily prove the following cool fact:

1.2.1. Proposition
Let 𝑀 → 𝕊1 be the Möbius bundle, then we have 𝑀 ⊗𝑀 ≅ 𝕊1 ×ℝ.

Proof: As Möbius bundle has transition maps 𝑔𝑖𝑗 = ±1, the tensor product has
transition maps (±1)2 = 1 everywhere, hence trivial. ∎
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1.3. Classification of vector bundles
The above proposition motivates us to classify line bundles on a manifold. As by
construction, the isomorphic classes of line bundles form an abelian group with ⊗ the
multiplication and 𝑀 ×ℝ as unit. This group is called Picard group of a manifold
𝑀  and denoted by Pic(𝑀).

1.3.1. Example
1. The Picard group Pic(𝕊1) is isomorphic to ℤ/2, i.e. the Möbius bundle is the only

non-trivial generator.
2. The Picard group of 𝕊2 ≅ ℂℙ1 is, however, much more interesting. One can show

that Pic(ℂℙ1) ≅ ℤ with the so called Serre twisting as the generator.

A more ambitious goal is to characterize all vector bundles at the same time. Frank
Adams did this via 𝐾-theory as a cohomology theory.

The isomorphic classes of vector bundles form a commutative monoid under the
Whitney sum and 𝑀 × ∗ as a unit. Using the Grothendieck group completion, it
turns to a group, called the 0-th 𝐾-group 𝐾0(𝑋) of the space 𝑋.

A similar spirit exists for 𝐾1(𝑋) the first 𝐾-group, but the story becomes a little bit
trickier.

A milestone for 20th century topology is the following theorem:

1.3.2. Theorem(Bott periodicity)
Let 𝑋 be a locally compact Hausdorff space(i.e. a manifold), then the complex 𝐾-
theory(ℂ-vector bundles) has period 2 and the real 𝐾-theory has period 8, precisely

𝐾𝑛+2(𝑋) ≅ 𝐾𝑛(𝑋)

𝐾𝑛+8
ℝ (𝑋) ≅ 𝐾𝑛

ℝ (𝑋)

Though the 𝐾-theory can be formulated in a pure algebraic setting, this periodicity is
unique for topological 𝐾-theory.

2. Parallelizable tangent bundles
2.1. Product and parallelizablity
The product manifold is compatible with parallelizablity in the sense of following
theorem.

2.1.1. Theorem
Let 𝑀1 and 𝑀2 be two parallelizable manifold, then the product 𝑀1 ×𝑀2 is also
parallelizable.

Proof: follows directly from the fact 𝑇(𝑝,𝑞)(𝑀1 ×𝑀2) ≅ 𝑇𝑝𝑀1 ⊕ 𝑇𝑞𝑀2. ∎

2.1.2. Corollary
The 𝑛-torus 𝕋𝑛 = 𝕊1 ×…× 𝕊𝑛 is parallelizable
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2.2. Parallelizable spheres
We have seen in the lecture that 𝕊1 is parallelizable and the linearly independent
section is given by 𝐽 ⋅ (𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝕊1 ⊂ ℝ2 and 𝐽 = ( 0

−1
1
0). This matrix can

be identified in the sense of complex numbers to be 𝑖(both are rotation of 90 degrees).

The astonishing fact is that 𝕊3 ⊂ ℝ4 is also parallelizable with the linearly
independent sections given by the structure of quaternion ℍ.

𝑠1(𝑥) ≔ 𝑥 ⋅ 𝑖 =

(
((
((
((
0
1
0
0

−1
0
0
0

0
0
0
1

0
0
−1
0 )
))
))
))
𝑥

𝑠2(𝑥) = 𝑥 ⋅ 𝑗 =

(
((
((
((
0
0
1
0

0
0
0
−1

−1
0
0
0

0
1
0
0)
))
))
))
𝑥

𝑠3(𝑥) = 𝑥 ⋅ 𝑘 =

(
((
((
((
0
0
0
1

0
0
1
0

0
−1
0
0

−1
0
0
0 )
))
))
))
𝑥

The same works fine for 𝕊7 ⊂ ℝ8 with octonion 𝕆. Also 𝕊0 ⊂ ℝ is parallelizable by
1 ∈ ℝ.

The ℝ-algebras ℝ,ℂ,ℍ,𝕆 are all division algebras, which means fields without
commutativity on multiplication assumed. This one-to-one correspondence of ℝ-
division algebras with parallelizable spheres has an end, formulated in following two
theorems.

2.2.1. Corollary
The only parallelizable spheres are 𝕊0, 𝕊1, 𝕊3 and 𝕊7.

2.2.2. Corollary
The only ℝ-division algebras are ℝ,ℂ,ℍ and 𝕆.

The bridge to relate these two deep results from topological world and algebraic
world is the following. Remember we have known in the lecture the Hopf fiber
sequence:

𝕊2𝑛−1 → 𝕊4𝑛−1 → 𝕊2𝑛

2.2.3. Theorem(Hopf invariant one)
Suppose there is a continuous map 𝑓 : 𝕊4𝑛−1 → 𝕊2𝑛 with Hopf invariant ℎ(𝑓) = 1,
then 𝑛 = 1, 2 or 4.

The proof uses 𝐾-theory and the famous Adams operations on spheres.
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3. The meaning of tangent spaces
3.1. Differentiating functions
One of the most important function of tangent vectors is giving a canonical way to
differentiate functions on manifolds. Consider 𝑓 : 𝑀 → ℝ smooth, we can view a
tangent vector as a derivation: 𝑣(𝑓) ≔ 𝐷𝑝𝑓(𝑣) in a local coordinate. If we have a
vector field 𝑋 that varies smoothly, then again we get a smooth derivative of 𝑓 as
𝑋(𝑓) : 𝑀 → ℝ, 𝑝 ↦ 𝑋𝑝(𝑓) ≔ 𝐷𝑝𝑓(𝑋𝑝).

3.2. Measuring geometry
Moreover if we equip a inner product on the tangent space and let it vary smoothly,
we can also measure many geometric properties. This inner product is so called
Riemann metric on manifolds and it truns out every smooth manifold can be
equipped with a Riemann geometry.

Different metrics induce different geometries. For example, the metric of 𝕋2 ⊂ ℝ3
induced from standard euclidean metric is different from the product metric from 𝕊1
to 𝕋2 = 𝕊1 × 𝕊1! The later one is called flat torus(or Clifford torus) and cannot be
embedded into ℝ3.

3.2.1. Definition
The length of a smooth curve 𝛾 : (𝑎, 𝑏) → 𝑀  is defined to be

𝑙(𝛾) ≔ ∫
𝑏

𝑎
‖𝛾′(𝑡)‖𝑑𝑡 = ∫

𝑏

𝑎
√⟨𝛾′(𝑡),𝛾′(𝑡)⟩𝑑𝑡

it’s invariant under reparametrization.

To measure the volume we need to know differential forms first.

4


	Construct vector bundles
	Pullback bundles
	Tensor product
	Proposition

	Classification of vector bundles
	Example
	Theorem(Bott periodicity)


	Parallelizable tangent bundles
	Product and parallelizablity
	Theorem
	Corollary

	Parallelizable spheres
	Corollary
	Corollary
	Theorem(Hopf invariant one)


	The meaning of tangent spaces
	Differentiating functions
	Measuring geometry
	Definition



