
Week 1 : Topological and smooth manifolds
Cheni Yuki Yang

1 More examples of manifolds
1.1 Lens space
It’s better to review some previous knowledge of group actions, also see Section 3.

Let 𝕊3 ⊂ ℝ4 ≅ ℂ2 be the 3-sphere. We denote the two complex coordinates by (𝑢, 𝑣).
Let 𝑝, 𝑞 ∈ ℤ with gcd(𝑝, 𝑞) = 1. We have a smooth endomorphism of 𝕊3 by

𝑇 : 𝕊3 → 𝕊3, (𝑢, 𝑣) ↦ (𝑒
2𝜋𝑖
𝑝 𝑢, 𝑒

2𝜋𝑖𝑞
𝑝 𝑣)

It’s easy to see that 𝑇 𝑝 = id𝑋.

We consider the action of ℤ/𝑝 on 𝕊3 defined by

𝜄 : ℤ/𝑝 → 𝐶∞(𝑋,𝑋), 1 ↦ 𝑇

Since ℤ/𝑝 is cyclic, we know this action is well defined.

By Section 3.3, the orbit space 𝐿(𝑝, 𝑞) ≔ 𝕊3/(ℤ/𝑝) is a smooth manifold. We call this
family the lens spaces.

This definition is easy to be generalized into higher dimensions, but in dimension 3
they are already very interesting.

Later we will know the homotopy group of a topological space, which is a powerful
algebraic approach to determine whether two topological manifolds are
homeomorphic. For dimension 𝑛 ≤ 2 we have the following theorem:

1.1.1 Theorem
If 𝑋𝑛 and 𝑌 𝑛 are homotopic, i.e. all homotopy groups are the same, then they are
already homeomorphic.

This is not true in higher dimensions. In 1935, Reidemeister had shown in [Rei35]
that 𝐿(5, 1) and 𝐿(5, 2) are homotopic, but they are not homeomorphic!

1.2 Orientation and projective spaces
The constructions of the torus and the Klein bottle are very similar, yet they yield
totally different manifolds, as 𝑇 2 can be embedded into ℝ3 but 𝐾2 not. The essential
point here is the orientability.

1.2.1 Definition
Let 𝑀𝑛 be a smooth manifold with atlas {𝜑𝑖}𝑖∈𝐼 . We say 𝑀  is orientable if all
chart transition maps 𝜑𝑖 ∘ 𝜑−1𝑗  have positive Jacobian determinant, i.e. det(∇(𝜑𝑖 ∘
𝜑−1𝑗 )) > 0, ∀𝑖, 𝑗 ∈ 𝐼 .
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This is rather a naive and computation tendentious definition, we will see more easy
definitions later using tangential spaces. Nevertheless, we can still use this to
illustrate an interesting example.

1.2.2 Definition
Let 𝐾 be an ℝ-division algebra, then we consider the quotient 𝐾𝑛 − {0}/ ∼ via 𝑥 ∼
𝑦 ⇔ ∃𝜆 ≠ 0 ∈ 𝐾, 𝑥 = 𝜆𝑦. We get the so called 𝑛-dimensional 𝐾-projective space
𝕂ℙ𝑛.

If you have already seen the exercise 4 on sheet 2, you will immediately notice that
there’s another definition for projective spaces, which can be identified with all 1-
dimensional subspaces of 𝐾𝑛, i.e. Gr𝐾(𝑛, 1).

1.2.3 Example
Let 𝐾 = ℝ, we have then the real projective space ℝℙ𝑛. It is orientable iff 𝑛 is odd.
We give a calculation to show ℝℙ2 is not orientable.

Consider the charts 𝜑 : {[𝑥] : 𝑥0 ≠ 0} → ℝ2, [𝑥0 : 𝑥1 : 𝑥2] ↦ (𝑥1𝑥0 ,
𝑥2
𝑥0
) and 𝜓 : {[𝑥] :

𝑥1 ≠ 0} → ℝ2, [𝑥0 : 𝑥1 : 𝑥2] ↦ (𝑥0𝑥1 ,
𝑥2
𝑥1
). From the lecture we have 𝜓−1 : ℝ2 → {[𝑥] :

𝑥1 ≠ 0}, (𝑥0, 𝑥2) ↦ [𝑥0 : 1 : 𝑥2]. We calculate the Jacobian of 𝜑 ∘ 𝜓−1:

∇(𝜑 ∘ 𝜓−1) = (
−1
𝑥2
−𝑦
𝑥2

0
1
𝑥
)

The determinate is thus −1𝑥3 , which is not always positive.

1.2.4 Example
Let 𝐾 = ℂ, by a long calculation you can however show that ℂℙ𝑛 is orientable. In
fact, more advanced techniques imply that all complex manifolds are orientable with
the canonical orientation induced from the complex structure.

2 The Rank Theorem
This section follows Lee’s book [Lee12].

2.1 Theorem
Suppose 𝑀𝑚 and 𝑁𝑛 are smooth manifolds. 𝑓 : 𝑀 → 𝑁  a smooth map such that the
rank of differential of 𝑓 is constant 𝑟 everywhere. Then for each 𝑝 ∈ 𝑀  there are
charts (𝑈, 𝜑) near 𝑝 and (𝑉 , 𝜓) near 𝑓(𝑝), in this local coordinate 𝑓 has the from

𝑓(𝑥1, 𝑥2,…, 𝑥𝑚) = (𝑥1,…, 𝑥𝑟, 0,…, 0)

In particular if 𝑓 is a submersion, then locally it looks like a projection.

2.1.1 Proof
As this is a local theorem, we may assume 𝑀 = 𝑈 ⊂ ℝ𝑚 and 𝑁 = 𝑉 ⊂ ℝ𝑛. Since 𝑓
has constant rank 𝑟, we can achieve via reordering that the upper left 𝑟 × 𝑟
submatrix of ∇𝑓 is invertible. We rename the coordinate of 𝑈  as
(𝑥1,…, 𝑥𝑟, 𝑦1,…, 𝑦𝑚−𝑟) and of 𝑉  as (𝑣1,…, 𝑣𝑟, 𝑤1,…,𝑤𝑛−𝑟). The function 𝑓 =
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(𝑄(𝑥, 𝑦), 𝑅(𝑥, 𝑦)) where 𝑄 : 𝑈 → ℝ𝑟 and 𝑅 : 𝑈 → ℝ𝑛−𝑟. By suitable translation we
assume 𝑝 = (0, 0) and 𝑓(𝑝) = (0, 0).

Define 𝜑 : 𝑈 → ℝ𝑚 by 𝜑(𝑥, 𝑦) = (𝑄(𝑥, 𝑦), 𝑦). The differential of 𝜑 will be

∇𝜑 = (𝜕𝑥𝑄0
𝜕𝑦𝑄
𝟙𝑚−𝑟

)

It is invertible at 𝑝, thus by inverse function theorem we have 𝜑 : 𝑈0 → 𝑈 ′0  a
diffeomorphism, where 𝑈0 and 𝑈 ′0  are both neighbourhoods of (0, 0). The inverse map
is 𝜑−1 = (𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦)) for some smooth functions 𝐴 : 𝑈 ′0 → ℝ𝑟 and 𝐵 : 𝑈 ′0 →
ℝ𝑚−𝑟. We have

(𝑥, 𝑦) = 𝜑(𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦)) = (𝑄(𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦)), 𝐵(𝑥, 𝑦))

Hence 𝐵(𝑥, 𝑦) = 𝑦 and 𝜑−1 = (𝐴(𝑥, 𝑦), 𝑦). On the other hand 𝑄(𝐴(𝑥, 𝑦), 𝑦) = 𝑥, and
therefore 𝑓 ∘ 𝜑−1 has the from

𝑓 ∘ 𝜑−1(𝑥, 𝑦) = (𝑥,𝑅(𝐴(𝑥, 𝑦), 𝑦)) ≕ (𝑥, 𝑅̃(𝑥, 𝑦))

The differential of 𝑓 ∘ 𝜑−1 is

∇(𝑓 ∘ 𝜑−1) = (
𝟙𝑟
𝜕𝑥𝑅̃

0
𝜕𝑦𝑅̃

)

Since composing with diffeomorphism does not change the rank, it has rank 𝑟. And
since the first 𝑟 columns are linearly independent, we know 𝜕𝑦𝑅̃ has to be 0 on 𝑈 ′0 ,
hence 𝑅̃ does not depend on 𝑦 and we let 𝑆(𝑥) = 𝑅̃(𝑥, 0).

Finally we need to reduce the 𝑉  to define a chart. Let 𝑉0 = {(𝑣, 𝑤) ∈ 𝑉 : (𝑣, 0) ∈ 𝑈 ′0},
we thus have 𝑓 ∘ 𝜑−1(𝑈 ′0) ⊂ 𝑉0 and 𝑓(𝑈0) ⊂ 𝑉0. Let 𝜓 : 𝑉0 → ℝ𝑛 to be 𝜓(𝑣, 𝑤) =
(𝑣, 𝑤 − 𝑆(𝑣)). The inverse is given by 𝜓−1(𝑠, 𝑡) = (𝑠, 𝑡 + 𝑆(𝑠)). We have shown that
(𝑉0, 𝜓) is a chart and

𝜓 ∘ 𝑓 ∘ 𝜑−1(𝑥, 𝑦) = 𝜓(𝑥, 𝑆(𝑥)) = (𝑥, 𝑆(𝑥) − 𝑆(𝑥)) = (𝑥, 0)

This completes the proof. ∎

3 Group actions on smooth manifolds
We fill the gap in the proof of lens spaces are manifolds.

3.1 Definition
A (left) group action 𝐺 on a set 𝑋 is a map 𝜄 : 𝐺 → Fun(𝑋,𝑋) such that:

1. 𝜄(𝑒) = id𝑋
2. 𝜄(𝑔ℎ) = 𝜄(𝑔) ∘ 𝜄(ℎ), ∀𝑔, ℎ ∈ 𝐺

If the induced maps on 𝑋 a manifold are all smooth, we call it a smooth action.

We write 𝑔𝑥 to mean 𝜄(𝑔)(𝑥).

3



The orbit of 𝑥 ∈ 𝑋 by 𝐺 is 𝐺(𝑥) ≔ {𝑦 ∈ 𝑋 : ∃𝑔 ∈ 𝐺, 𝑔𝑥 = 𝑦}.

3.2 Definition
1. We say a group action 𝜄 : 𝐺 → Fun(𝑋,𝑋) is free, if ∀𝑔 ≠ 𝑒, 𝜄(𝑔) ≠ id𝑋.
2. We say a group action 𝜄 : 𝐺 → Fun(𝑋,𝑋) for 𝑋 a topological space is properly

discontinuous if for any 𝑦 ∈ 𝑋 not in the orbit 𝐺(𝑥), we can find neighbourhoods
𝑥 ∈ 𝑈  and 𝑦 ∈ 𝑉  such that 𝑔(𝑈) ∩ 𝑉 = ∅.

3.3 Theorem
Let 𝑋𝑛 be a smooth manifold, let 𝐺 acts smoothly on 𝑋 freely and properly
discontinuously. Then the orbit space 𝑋/𝐺 is an 𝑛-dimensional smooth manifold.

3.3.1 Proof
We firstly need to show 𝑋/𝐺 is hausdorff. Let [𝑥] ≠ [𝑥′] in 𝑋/𝐺, hence 𝑥′ is not in
the orbit of 𝑥. Now since 𝐺 acts properly discontinuously, we can find 𝑥 ∈ 𝑈  and 𝑥′ ∈
𝑉  that separated 𝑥 and 𝑥′. Since 𝜋 is an open map, 𝜋(𝑈) and 𝜋(𝑉 ) are enough for
our purpose(check they are disjoint!).

Second countability is clear.

Pick a point [𝑥] ∈ 𝑋/𝐺, then as the action of 𝐺 is free and properly discontinuous,
we can find an open neighbourhood 𝑈  of 𝑥 such that 𝑔(𝑈) ∩ 𝑈 = ∅, ∀𝑔 ≠ 𝑒. Keeping
shrinking the open to make sure it lies in a chart 𝜑 : 𝑈 → ℝ𝑛 of 𝑋.

Now let 𝑉 = 𝜋(𝑈), this is open as 𝜋 is open and by construction for every point 𝑣 ∈
𝑉  there’s only one unique point 𝑢 ∈ 𝑈  such that 𝜋(𝑢) = 𝑣. With some abuses of
notation we denote this by 𝜋−1(The true preimage has more disjoint copies of 𝑈 ,
which is related to the covering space). We set 𝜓 : 𝑉 → ℝ𝑛 by 𝜓 = 𝜑 ∘ 𝜋−1.

The claim is now {𝑉 , 𝜓}[𝑥]∈𝑋/𝐺 will be a smooth atlas. Clearly it covers 𝑋/𝐺. Again
since 𝜋 is a continuous open map and 𝜑 is a homeomorphism, we conclude 𝜓 is a
homeomorphism. Thus 𝑋/𝐺 is a topological manifold.

Let 𝑣 ∈ 𝑉 ∩ 𝑉 ′, take 𝑥 ∈ 𝑈  and 𝑦 ∈ 𝑈 ′ such that 𝜋(𝑥) = 𝜋(𝑦) = 𝑣, thus there is a 𝑔 ∈
𝐺 such that 𝑔(𝑦) = 𝑥. We can consider the chart (𝑔(𝑈 ′), 𝜑′ ∘ 𝑔−1) on 𝑋 since 𝐺 is a
smooth action. In order to show the transition map 𝜓′ ∘ 𝜓−1 is smooth, it is enough
to show it is smooth in a neighbourhood of 𝜓(𝑣) = 𝜑(𝑥). On the small open 𝜑(𝑈 ∩
𝑔(𝑈 ′)) we then have

𝜓′ ∘ 𝜓−1 = 𝜑′ ∘ 𝑔−1 ∘ 𝜋−1 ∘ (𝜑 ∘ 𝜋−1)−1 = (𝜑′ ∘ 𝑔−1) ∘ 𝜑−1

which is smooth. ∎
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