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What we mean next as category is always an (∞, 1)-category, where we identify the 1
-category with its nerve.

1 Motivation: Faithfully flat descent
In this section we consider the theory in 1-category. Grothendieck proposed a 

faithfully flat descent theorem of commutative rings. That is, if 𝐴 → 𝐵 is faithfully 

flat, then

Mod𝐴 ≃ lim←(Mod𝐵 ⇉Mod𝐵⊗𝐴𝐵 ⇶Mod𝐵⊗𝐴𝐵⊗𝐴𝐵) (1.1)

This theorem is proved using Barr-Beck theorem, by showing 𝐹 : Mod𝐴 ⇄Mod𝐵 : 𝐺 

is comonadic, which means there is a comonad 𝑇 = 𝐹𝐺 over Fun(Mod𝐵,Mod𝐵) 
equipped with composition monoidal structure such that Mod𝐴 ≃ LMod𝑇 (Modop𝐵 )

op
 

given by 𝑀 ↦ (𝑀 ⊗𝐵,𝑀 ⊗𝐵 → 𝑀 ⊗𝐵 ⊗𝐵).

2 Grothendieck topologies on CAlg
We introduced the fpqc and (finite) étale topology over CAlg.

Definition 2.1 Let 𝜑 : 𝐴 → 𝐵 be a morphism of ℰ︀∞-rings. 𝜑 is said to be (faithfully) 

flat if

1. 𝜋0𝐴 → 𝜋0𝐵 is (faithfully) flat and

2. 𝜑 induces an isomorphism of graded rings

𝜋0𝐵 ⊗𝜋0𝐴 𝜋∗𝐴 → 𝜋∗𝐵. (2.1)

Remark 2.2 Similarly we can define étale morphism as morphism which is étale over 

𝜋0 and the map (2.1) is an equivalence.

This definition is essentially a generalization of faithfully flat maps of discrete rings. 

As [[Lur17], Corollary 7.2.1.22] we can show that if 𝐴 → 𝐵 is faithfully flat, then a 

morphism 𝑀 → 𝑁  of 𝐴-modules is an equivalence iff 𝑀 ⊗𝐵 → 𝑁 ⊗𝐵 is.

A collection of morphisms generate a finitary Grothendieck topology, and thus the 

category of sheaves as a coherent topos, if the following is hold:

Proposition 2.3 [[Lur18], Proposition A.3.2.1] Let 𝒞︀ be a category and 𝑆 be a 

collection of morphisms in 𝒞︀, suppose:

1. 𝑆 contains all equivalences and is stable under composition.

2. 𝒞︀ admits pullbacks and finite coproducts, and 𝑆 is closed under them.

3. Finite coproducts in 𝒞︀ are universal, i.e., given a diagram ∐1≤𝑖≤𝑛𝐴𝑖 → 𝐵 ← 𝐵′, 

the canonical map
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∐
1≤𝑖≤𝑛

(𝐴𝑖 ×𝐵 𝐵′) → ( ∐
1≤𝑖≤𝑛

𝐴𝑖)×𝐵 𝐵′ (2.2)

is an equivalence.

Then there is a finitary Grothendieck topology on 𝒞︀ such that a sieve over 𝐶 is a 

cover if and only if it contains a finite collection of morphism {𝐶𝑖 → 𝐶}1≤𝑖≤𝑛 such 

that ∐𝐶𝑖 → 𝐶 belongs to 𝑆.

Proposition 2.4 [[Lur18], Proposition B.6.1.3] The collection of faithfully flat maps 

in CAlgop satisfies the assumptions in Proposition 2.3 and generates a Grothendieck 

topology, which we call the fpqc topology on CAlgop.

Remark 2.5

1. Similarly there is a “small” fpqc site over CAlg𝑅, the category of all 𝑅-algebras for 

𝑅 an ℰ︀∞-ring.

2. Both “big” and “small” fpqc sites are actually big, hence Shvfpqc(CAlg
op
𝑅 ) is not 

always an accessible localization of 𝒫︀(CAlgop𝑅 ) ≔ Fun(CAlg𝑅, An). Nevertheless, 

we will see a weaker version of descent like in classical setting in §4.

If we restrict our attention to the full subcategory CAlgét𝑅, spanned by the étale 𝑅-

algebras, then we have also a Grothendieck topology induced by faithfully flat maps, 

called the étale topology.

Remark 2.6 [[Lur17], Theorem 7.5.0.6] CAlgét𝜋0𝑅 ≃ CAlgét𝑅 for 𝑅 an ℰ︀∞-ring. This 

makes the étale site easier to control than the fpqc site.

We can impose some finiteness condition on morphisms of ℰ︀∞-rings, which should be 

an extension of the theory on discrete rings.

Definition 2.7 Let 𝜑 : 𝐴 → 𝐵 be a flat morphism of ℰ︀∞-rings. We say 𝜑 is finite if 𝜑 

exhibits 𝜋0𝐵 as a finitely presented, of equivalently finitely generated projective 

module over 𝜋0𝐴. We say 𝜑 is finite étale if it is both finite flat and étale.

Proposition 2.8 There is a Grothendieck topology on (CAlgét𝑅)
op

 generated by sieves 

of finite collection of morphisms {𝐴 → 𝐴𝑖}1≤𝑖≤𝑛 for which the induced map 𝐴 →
∏1≤𝑖≤𝑛𝐴𝑖 is finite flat and faithfully flat. We will refer to this topology as the finite 

étale topology on (CAlgét𝑅)
op

.

3 Universal descent and Barr-Beck-Lurie
We introduce pro objects, which is a generalization of presheaves.
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Proposition 3.1 [[Lur09], Proposition 5.3.6.2] Let 𝒞︀ be a category, there is an 

category Pro(𝒞︀) and a embedding 𝑗 : 𝒞︀ → Pro(𝒞︀) with following universal properties:

1. Pro(𝒞︀) has all small cofiltered limits.

2. Let 𝒟︀ be a category with small cofiltered limits, let Fun′(𝒞︀,𝒟︀) be those functors 

that preserve small cofiltered limits, then the embedding 𝑗 induces an equivalence

Fun′(Pro(𝒞︀),𝒟︀) →≃ Fun(𝒞︀,𝒟︀) (3.1)

If 𝒞︀ is accessible, we may identify Pro(𝒞︀) with the full subcategory of Fun(𝒞︀,An)op 
spanned by functors that are left-exact and accessible.

Proposition 3.2 [[Lur09], Proposition 5.3.1.16] Every pro-object 𝑋 ∈ Pro(𝒞︀) can be 

corepresented by a diagram 𝒥︀ → 𝒞︀ where 𝒥︀ is a small cofiltered partially ordered set.

The first step towards our wish is the ∞-categorical Barr-Beck theorem. It asks how 

we can recover the objects in the base category using an approximation via 

comonadic pair of functors.

Theorem 3.3 (Barr-Beck-Lurie) [[Lur17], Theorem 4.7.3.5] Let 𝐹 : 𝒞︀ ⇄ 𝒟︀ : 𝐺 be a 

pair of adjoint functors between categories. The adjunction is comonadic if and only 

if

1. 𝐹  is conservative, i.e. preserves equivalences and

2. For every cosimplicial object 𝑋∙ in 𝒞︀ such that 𝐹(𝑋∙) admits a splitting, Tot(𝑋∙) 
exists and

𝐹(Tot(𝑋∙)) ≃ Tot(𝐹(𝑋∙)). (3.2)

Example 3.4 Let 𝐵 ∈ CAlg𝐴, then the forgetful functor Mod𝐵 →Mod𝐴 is 

conservative and preserves limits and colimits, hence there is a right adjoint Mod𝐴 →
Mod𝐵 and by Barr-Beck-Lurie this adjunction is comonadic.

However, we will need to consider the more general case. Given a comonadic 

adjunction as above, one can recover any object 𝐶 ∈ 𝒞︀ as the homotopy limit of the 

cobar construction

𝐶 → (𝑇𝐶 ⇉ 𝑇 2𝐶 ⇶ …). (3.3)

Here is an essential difference between 1-category and ∞-category. In 1-category, the 

homotopy limit of a cosimplicial diagram is a equalizer. But here it is infinite.

The following definition is universal among all morphisms satisfying this property. It 

was first discovered by homotopy theorist, when trying to understand modules over 

ring spectra in chromatic homotopy theory.
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Definition 3.5 Let 𝒞︀ be a stable category. A full subcategory 𝒟︀ ⊂ 𝒞︀ is called think 

if 𝒟︀ is closed under finite limits and colimits and under retracts. If 𝒞︀ has a 

symmetric monoidal structure, then 𝒟︀ is a think ⊗-ideal if it is in addition a ⊗-ideal.

Definition 3.6 A morphism 𝑓 : 𝐴 → 𝐵 of ℰ︀∞-rings is called universal descent 

morphism if the thick ⊗-ideal generated by 𝐵 is the whole Mod𝐴.

We can relate this definition to pro-objects and comonadicity.

Proposition 3.7 [[Mat16], Proposition 3.20] Given 𝐴 ∈ CAlg, 𝐴 → 𝐵 admits descent 

if and only if the cosimplicial diagram CB∙(𝐵) defines a constant pro-object 

{Tot𝑛CB∙(𝐵)}𝑛≥0 which converges to 𝐴 in Pro(Mod𝐴), i.e., CB∙
aug(𝐵) is a limit 

diagram.

Proposition 3.8 [[Mat16], Proposition 3.22] Given 𝐴 ∈ CAlg, if 𝐴 → 𝐵 admits 

descent then the adjunction Mod𝐴 ⇄Mod𝐵 is comonadic, in particular, Mod𝐴 can be 

covered from a total tower.

The classical theorem of Grothendieck has the following ℰ︀∞-ring analogue.

Proposition 3.9 Let 𝐴 → 𝐵 be a faithfully flat map of ℰ︀∞-rings such that 𝜋0(𝐵) has 
a presentation as 𝜋0(𝐴)-algebra with at most ℵ𝑘 generators and relations for some 

𝑘 ∈ ℕ. Then 𝐴 → 𝐵 admits descent.

This condition is essential. We may think it as the uncontrolled behaviour of fpqc An-
valued sheaves: There could be some arbitrary big spaces! For a counterexample, see 

[Aok24] with a construction using boolean rings. For practical use, ℵ1 is enough, just 

like that in condensed mathematics.

Finally we explain why this definition is the universal among all descent maps. This 

can be rephrased as a sheaf condition. We give some definition used first.

Definition 3.10 Let 𝐴 be an ℰ︀∞-ring. A presentable (stable) category 𝒞︀ is called 𝐴-

linear if it is a module in the symmetric monoidal category ModMod𝐴(Pr
𝐿) of 

presentable categories over Mod𝐴.

We can think 𝐴-linear categories as a 2-categorical version of Mod𝐴.

Notation 3.11 Let 𝐴 → 𝐵 be a map of ℰ︀∞-rings and 𝒞︀ be an 𝐴-linear category. We 

shall denote Mod𝐵(𝒞︀) as the tensor product 𝒞︀ ⊗Mod𝐴 Mod𝐵 in Pr𝐿. Informally, 

Mod𝐵(𝒞︀) is the target of an 𝐴-bilinear functor ⊗𝐴 : 𝒞︀ ×Mod𝐵 →
Mod𝐵(𝒞︀), (𝑋,𝑀) ↦ 𝑋 ⊗𝐴 𝑀 .
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Now we can state the main theorem.

Theorem 3.12 Let 𝐴 be an ℰ︀∞-ring and let 𝒞︀ be a stable 𝐴-linear category. The 

construction 𝐵 ↦ Mod𝐵(𝒞︀) determines a Pr𝐿-valued sheaf with respect to the 

universal descent topology on the category CAlgop𝐴 . Moreover, this is the finest 

topology such that this holds.

4 Descent in fpqc topology
The universal descent topology is limited. We certainly want a (limited) descent 

theorem for finer topology, e.g. the fpqc topology. We have the following result:

Definition 4.1 Let 𝐴 ∈ CAlg and 𝒞︀ be a stable 𝐴-linear category. We say 𝒞︀ satisfies 

flat (hyper)descent if the functor

𝜒 : CAlg𝐴 → Ĉat∞, 𝐵 ↦ 𝐵 ⊗𝐴 𝒞︀ (4.1)

is a (hypercomplete) fpqc sheaf.

Theorem 4.2 [[Lur18], Theorem D.6.3.1] Let 𝐴 ∈ CAlg≥0 and 𝒞︀ be a Postnikov-

complete prestable 𝐴-linear category, i.e. if 𝒞︀ ≃ lim𝑛 𝜏≤𝑛𝒞︀, then 𝒞︀ satisfies flat 

hyperdescent.

Proposition 4.3 [[Lur18], Corollary D.6.3.3] Let 𝐴 be an ℰ︀∞-ring, then the 𝐴-linear 

category Mod𝐴 satisfies flat hyperdescent.

Proof. by Example 3.3 we may assume 𝐴 = 𝕊, then 𝐴 is connective. We claim it 

suffices to show Modcn𝐴  has flat hyperdescent, which is immediate from the last 

theorem. ∎

Corollary 4.4 The fpqc topology on CAlgop is subcanonical.

5 More descent morphisms
Looking at the definition of descendable morphism, we notice it is only a pro-object-

wise equivalence between the base ring and the totalization of the target. This 

equivalence may not preserve the ring structure in the intermediate step as finite 

totalizations, therefore, we can define a slightly different variant as in [AS25].

Definition 5.1 Let 𝑓 : 𝑅 → 𝑆 be a morphism of ℰ︀∞-rings. 𝑓 is said to be ℰ︀∞-

descendable if the map of towers {𝑅} → {Tot𝑛(𝑆∧∗+1)}
𝑛
 is a pro-equivalence in 

Pro(CAlg(Mod𝑅)).
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Proposition 5.2 [[AS25], Proposition 2.3] Let 𝑓 : 𝑅 → 𝑆 be a morphism of ℰ︀∞-rings. 

The followings are equivalent:

1. 𝑓 is ℰ︀∞-descendable.

2. The map 𝑅 → Tot𝑛(𝑆∧∗+1) admits an ℰ︀∞-retraction for some 𝑛 ≥ 0.
3. If 𝒞︀ is the smallest full subcategory of CAlg(Mod𝑅) which contains the ℰ︀∞-algebra 

that admits a map from 𝑆 and 𝒞︀ is closed under finite limits and retractions, then 

𝒞︀ contains 𝑅.

Example 5.3 KO → KU is descendable, but it is still unknown whether it is ℰ︀∞-

descendable.
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