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Abstract

We study the slice filtrations of motivic ring spectra and spectral sequences
associated to them. Using décalage, we could relate Adams-Novikov spectral
sequences with slice spectral sequences after suitable Betti realization and étale

realization, this works in both characteristic zero and p cases.

Zusammenfassung

Wir betrachten die Slice-Filtrationen motivischer Ringspektren und die zugehorigen
Spektralsequenzen. Mit dem sogenannten Décalage-Funktor kénnen wir
Isomorphismen zwischen der Spektralsequenz von Adams-Novikov und der aus der
Slice-Filtration stammenden Spektralsequenz nach geeigneter Betti- und étale
Realisierung konstruieren. Der Ansatz ist sowohl in Charakteristik 0 als auch in

Charakteristik p anwendbar.



I imagined it infinite, made not only of eight-sided pavilions and of twisting paths
but also of rivers, provinces and kingdoms...

I though of a maze of mazes, of a sinuous, ever growing maze

which would take in both past and future and would somehow involve the stars.

Jorge Luis Borges, The Garden of Forking Paths



Contents

1 Introduction.......ooiiiiiiiiiiii e 1
2 t-Structure on filtrations ...t 3
2.1 Filtrations and chain complexes ...........ooiiiiiiiiiiiiiii e 3
2.2 Beilinson t-structure ................ 6
23 Décalage ... ... 8
3 The stable motivic category ......coiiiiiiiiiiiiiiiii i 14
3.1 MOIVIC SPACE . .. 15
3.2 Pl-invariance and stabilization ..............o.oiiiiiiiii i 17
3.3 Al-connectivity theorem .............ooiiiiiiiiiii 20
3.4 Some MOtiVIC SPECHIa ... v 23
3.5 ThOmM SPECtra .....oo.viiiii i 27
4 Motivic filtrations and realizations ..............coooiiiiiiiiiiiiiiiiiiiii 32
4.1 Motivic slice tOWET .....uiiit 32
4.2 Hopkins-Morel iSomorphism ......... ..o 35
4.3 Realization functor.......... ..o 38
4.4 Realizationsand slices ... 41
5 Application: Spectral SEqUeNCes ......cuvviuiiiiiiiiiiiiiiiiiiiiii ittt i 45
5.1 Motivic Atiyah-Hirzebruch spectral sequence ..............oooiiiiiiiiiiiiiiiiinnn. 45
5.2 Comparison theorem . ........ooiiuiiii it 46
5.3 A spectral sequence of étale cobordism ... 49
6 Appendix: Higher category theory ..ot 51
6.1 Definition of (00, 1)-CateGOTY ... vttt ettt 51
6.2 Stable 00-CateGOTY ... ...ttt 56
6.3 Examples of stable oco-category ... 63
6.4 Symmetric monoidal structure ............ ... 64
6.5 Presentable co-category ... 66
6.6 Category Of SPANS .......cooviiii e 69
6.7 Pro-0Djects ... 70
6.8 & -descendability ............oo 71
Bibliography .....ouuiiiii i e 72



1 Introduction

Where there is a spectral sequence, there is a filtration. In this thesis, we will have a close
inspection of this “common sense”. In particular, the homotopy information of graded pieces
of every filtration turns out to be a reasonable approximation of the homotopy information of
the object, this approximation is realized via spectral sequences.

We will focus on the so called motivic ring spectra in motivic homotopy theory. In [Voe02]
Voevodsky defined the slice filtration on these ring spectra and proposed a series of conjectures
about it. several conjectures are related to the convergence of spectral sequences associated to
certain slices, for example, the slice filtration on algebraic cobordism spectrum MGL.
Nowadays we know the behavior of the slice spectral sequence of MGL is more or less
“topological”: as discovered in [Lev15], under Betti realization it is isomorphic to the Adams-
Novikov spectral sequence for calculating stable homotopy group of spheres. On the other
hand, the slice filtration on MGL works as a “bridge” between stable motivic stems and
topological stable stems as shown in Lemma 5.2.3 later. The goal of this thesis is to study these
connections in a systematic way.

One of our main tools is called décalage, first mentioned in [Del71], and was explicitly used
in the form of cosimplicial spectra by [Lev15], this tool is used to construct spectral sequences
by translating higher pages into E,-page. Recently [Ant24] gives a nice reinterpretation of the
theory in the setting of stable co-categories, making it possible to extend old results into the co
-categorical setting. We introduce these results now.

Let k be an algebraically closed field of character zero. The embedding k£ < C induces a Betti
realization functor Re¢ : S# (k) — SH . Let S;, be the motivic sphere spectrum, i.e. the unit in
SJ (k) and let S}, be the slice filtration on it.

We give new proofs of following theorems:

Theorem 1 [[Lev15], Theorem 1] Consider the Adams-Novikov spectral sequence
Ey*(AN) = Extyjy o) (MU, MU,) = m,_S (1.1)
and the motivic Atiyah-Hirzebruch spectral sequence
BLYAH) =1,y o(8r IS (k) = 7y y0(S,) (k). (1.2)
Then there is an isomorphism
VP9 : EPY(AH) = B T9(AN) (13)
which induces a sequence of isomorphisms of complexes for r > 1
By W (@0 EPUAH), d,) > (@, BT (AN), dyy ). (1.4)

In other words, the Betti realization of the slice filtration spectral sequence in §% (k) is isomor-

phic to the classical Adams-Novikov spectral sequence up to indices.



Theorem 2 [[Lev15], Theorem 2] Fix a prime ¢ and the associated Brown-Peterson spectrum
BP®. The isomorphism in Theorem 1 extends to an isomorphism of the ¢-local Adams-

Novikov spectral sequence

ESY(AN), = Eth;(e) (BPS@, BP,(f)) =, S®Zy (1.5)

(BP()
and the ¢-local motivic Atiyah-Hirzebruch spectral sequence

EYIAH) = m__o(er 9Sp) (k) @ Zg) = T_p_q,0(Si) (k) ® Zy. (1.6)
And we have our new result, answering the question in [[Lev15], Remarks 2.3]:

Theorem 3 Let k be any algebraically closed field of characteristic p. Let £ # p be a prime
number. Let MU be the ¢-adic completion of complex cobordism. For simplicity We may
denote S, and MU to be their Bott inverted counterparts as explained in §5.3. The Adams-

Novikov spectral sequence

s,t
Ey(AN)y = EXtMUQY*(MU@) (MU?,*7MU2\,*) = (m_,S),

/ (1.7)

converges and is isomorphic to the ¢-complete motivic Atiyah-Hirzebruch spectral sequence
EVU(AH); =7y qo(er "Si[1/ pD)(R) @ Zp = 7y 0(Si[L / PD(R)®Z,  (1.8)

with isomorphisms induced by the étale realization functor.

Outline of the thesis: In Chapter 2 we introduce the abstract theory of décalage as developed
in [Ant24]. In Chapter 3 we review the basic motivic homotopy theory, putting an emphasize
on the construction of algebraic cobordism as a Thom spectrum. In Chapter 4 we construct slice
filtrations of motivic spectra and realization functors, proving exactness condition and descent
properties of them. Putting all these ingredients together, we give proofs of our main results in
Chapter 5. In Appendix we collect some tools from higher category theory and higher algebra

used in this thesis.

Convention: What we mean of an co-category is always an (oo, 1)-category in the sense of

Lurie. We always identify an 1-category with its nerve. Every ring in this thesis is unitial.

Acknowledgements: I am very grateful to Alberto for being my supervisor, suggesting me
this interesting topic and many useful discussions. I thank Liu Ou for his suggestion on &
-descendability. I shall never forget Yuxue, Copper and many of my friends for their compan-
ions. I thank Akira Complex for your touching music, you are my guiding star.

I would like to thank the Deutsche Forschungsgemeinschaft for financial support under the
program CRC/TRR 326 Geometry and Arithmetic of Uniformized Structures, project number
444845124.



2 t-Structure on filtrations

2.1 Filtrations and chain complexes

Let € be an co-category with cofibers, an initial object 0 and a final object x.
Recall we can view Z as a category whose objects are the integers n € Z and there is at most

one map n — m, which exists when n < m.

Definition 2.1.1 The oo-category of decreasing filtrations Fil(C) is defined by

Fil(€) := Fun(Z, C) (2.1.1)
Similarly, one can define the co-category of increasing filtrations by replacing Z°° with Z.
Intuitively, a filtration F* indexed by Z°® may looks like a sequence

wo > FSTL s 5 el (2.1.2)

This definition makes € a full subcategory of Fil(€) by viewing each object X € € as a constant

filtration.

Definition 2.1.2 We will also consider a filtration on an object X of C:itis a filtration F* together
with a map F* — X, where X is viewed as a constant filtration. We denote the co-category of
filtrations on objects as Fil(€)/C.

Consider the category Z” an extension of Z°° with a new terminal object —co. We have an

equivalence of co-categories:

Fil(€)/€ ~ Fun(ZY, C). (2.1.3)

Definition 2.1.3 A filtration F* on X is exhaustive if X =~ colim F* =: F~>°. A filtration F* is
complete if F*° := lim F*® ~ 0. By construction, all complete filtrations form a full subcategory

of filtrations, to which we denote Fil (C).

Remark 2.1.4 Assuming € has sequential colimits, which ensures the existence of the realization
|F*| := colim F* in €, each filtration F* can be viewed as a filtration on [F*| = F~°. If F* is
a filtration on X, then we have a canonical map |[F*| — X by taking the colimit, which is an
equivalence iff F* is exhaustive.

It's also not hard to see the functor |—| : Fil(€) — C is a left adjoint of the constant functor € —

Fil(€). The picture we can bear in mind for this example is

L —— Fef! > F* > Fool ;
F—OO



Definition 2.1.5 Let F* be a filtration. The graded piece of F* of degree s € Z is
gr®F* := cofib(F*t! — F?) (2.14)

More generally, for i < j, let grlv9)F* = cofib(F/ — F?). By definition we have grlv9F* ~ 0
and grl»*+VF* ~ gr'F*. It's convenient to denote gr(~>/)F* for colim,grl*/)F* and grl*>)F* for
limjgr[i’j)F*.

If the context is clear, we may drop out F* and simply write grl®7).

The graded piece grl7) itself has a filtration

id

4 L Coid
o= 0= gril 5 grli29) o grlhd) = grivd) — (2.1.5)

by the nature of cofiber sequences with gr’~! putin the filtration degree j — 1. The graded piece

of grliy) would be

grk(F*)ifi <k <j

gr’(grY)) = {0

(2.1.6)
else

Example 2.1.6 We can equip a cochain complex X* € Ch*(Z) with the so-called truncation
filtration *X*® by 0* X* = X=5_It's a complete exhaustive filtration by definition. Looking at
the underlying homotopy type produces a filtration ¢*X on X, the image of X* in D(Z) as
derived co-category. The s-th graded piece of 0* X* is gr®(c*X*) = X* placed at the cohomo-
logical degree s, while the s-th graded piece of 6* X is gr®(c* X) = X*[—s].

Example 2.1.7 Let 7 be the co-category of spectra with the usual Postnikov ¢-structure. Then
for each X € $# the Whitehead tower defines a filtration on X:

e = T X 2 o, X =1 X — (2.1.7)

This is a complete and exhaustive filtration on X as the Postnikov ¢-structure is compatible

with filtered colimits. The graded piece is gr* X ~ 7 X]|s].

A common approach of understanding new objects in mathematics is finding a suitable filtra-
tion, taking the graded pieces, and trying to extract the information of the original object from
them. One method of computing these information is via spectral sequences. For the remaining
part of this chapter, we will introduce two methods for constructing spectral sequences asso-

ciated to filtrations.

Definition 2.1.8 If € admits sequential limits, the inclusion Fil (€) C Fil(€) has a left adjoint,
which is the completion of a filtration. Explicitly the filtration is given by

Fs := cofib(F>® — F*) (2.1.8)

Suppose F* is a filtration on X, we set X := cofib(F>® — X), then the completion F* is a

complete filtration on X.



By taking graded pieces, we will lose some information contained in filtrations, for example,
the differentials:

There is an analogy of cochain complexes in the graded structure of filtrations. This was already
known by Beilinson as in [Bei87] and in [[Lurl7], §1.2.2] it was considered under the name of
J-complex. For this, we need € to be a stable co-category.
Let F* be a filtration over €, the cofiber sequence

grotl — grlss+2) 5 grs (2.1.9)

gives rise to a map d* : gr® — grot1[1].
Proposition 2.1.9 d® o d*~! ~ (.

Proof. Immediately from the following diagram:

grs+2 5 gr[s+1,s+3) 5 grs-i-l 5 grs+2[1]

~ ~

grs+2 - gr[s,s+3) - gr[s,s+2) N gr5+2[1]

~ ~ ~ ~

gr[s+2,s+2) ~() ——— grs _—— grs e gr[s+2’s+2)[1] ~(

d

~ ~ ~ d ~
grs+2[1] SN gr[s+1,s+3)[1] - grs+1[1] - grs+2[2]

where all rows and columns are cofiber sequences. O
Inspired by this proposition, we may define a chain complex structure on pointed oo-category
C.Let Ebe the pointed 1-category with objects in Z,, the pointed integers, where « is both initial
and terminal. The morphisms of Z can be described as follows:
* ifn#£Em,m—1
Homg(m,n) =<id,* ifn=m (2.1.10)

0,% ifn=m-—1
such that § o § = .
Definition 2.1.10 Let € be a pointed co-category, the co-category of coherent cochain complexes

Ch*(C) is defined to be the pointed functor category Fun, (2P, €), while the coherent chain

complexes Ch,(€) are the covariant pointed functors Fun, (Z, C).

Remark 2.1.11 If A is an abelian category in the usual sense, then Ch*(.A) is just the category

of cochain complexes on A.



2.2 Beilinson t-structure

The following theorem is due to Ariotta. It relates a complete filtration with a coherent cochain

complex in a stable co-category.

Theorem 2.2.1 [[Ari21], Theorem 4.7] Let € be a stable co-category with sequential limits. There is a
canonical categorical equivalence of complete filtrations and coherent cochain complexes:

Fil_(€) ~ Ch*(C) (2.2.1)

which sends a complete filtration F* to a cochain complex C with C™ ~ gr"F*[n].

Definition 2.2.2 Let (€., C) be a t-structure on a stable co-category € with sequential limits.
Consider the pointwise t-structure on Ch*(€), by (2.2.1) we can thus define a ¢-structure
(Fil, (€)%, Fil,(€)%,) on Fil,(€), which is called the Beilinson ¢-structure on Fil,(€).

Remark 2.2.3 Unfold the equivalence in Theorem 2.2.1, the connective objects in Beilinson ¢
-structure are just those complete filtrations F* such that gr"F* € €. _,, and coconnective
objects are those F* such that gr"F* € €__,,. The heart of the Beilinson t-structure is Ch®(€)" ~
Ch*(€7).

Historically, in [Bei87] Beilinson tried to define the ¢-structure on non-complete filtration Fil(€)
by declaring Fil(€)%, as the full subcategory of those filtrations F* with gr"F* € €,_,,. This is

however better to handle the non-complete case like the following:

Construction 2.2.4 For incomplete filtrations F* € Fil(€), we may consider the adjunction pairs

iy, JL

N N

i— Fil(€) 1 Fil(e)
\J_‘/ \/

IR J

¢

where i the constant filtration functor and j the inclusion. From the previous section we know

i, (F*) = [F*|
ig(F*) =F (2.2.2)
jL(F*) = 15\*

Now let (€%, CLy) := (€, 0) be the trivial t-structure on €, we can define the glued t-structure
on Fil(€) given by
Fil(€)so = {F* € Fil(C) : j,(F*) € Fil (€)Y, (F*) € €Ly}

(2.2.3)
Fil(€) ., = {F* € Fil(€) : j.(F*) € Fil (€)%, in (F*) € €, }.



Explain in words, a connective objectin Fil(€) is just a filtration whose completion is connective
in Fil,_(€) with respect to Beilinson ¢-structure and a coconnective object is a complete filtration

which is coconnective in Fil (€), i.e. Fil(€), ~ Fil (€)%,.

Remark 2.2.5 In our setting we will call this construction on Fil(€) also the Beilinson ¢-structure.
But be aware of the difference between this ¢-structure and the one defined in [Bei87]. Only
under the assumption of right separateness of (€., C,) we can prove the equivalence of these

two structures, for a proof see [[Ari21], Theorem 5.11].

We consider the following composition of functors

Ch*(€V) < Fil (€)%, < Fil,(€) < Fil(€) i e (2.2.4)

which sends a coherent cochain complex X* to [0*X*|, where * X* is the truncation filtration

defined in Example 2.1.6. For simplicity we just write | X*|.

Lemma 2.2.6 Let C be a stable co-category with sequential limits and colimits, let (Csq, C<() be a t-

structure on C. For X* € Ch*(C) a coherent cochain complex, we have

H(X*) =, (X)) (2.2.5)

Proof. By shifting we reduce to the case n = 0. Recall the graded piece on ¢*X is given by
gr"o*X = X"[—n] for X € Ch*(€). We can construct the following short exact sequence in €:
0 = mogrl®? = X0 L X1 5 1 il 0, (2.2.6)
This implies that we can identify 7,grl®? with the cocycle Z° of degree 0. On the other hand,
the fiber sequence grl®? — grl=12) 5 gr~! yields an exact sequence
x4 70 mogrl =12 — 0. (2.2.7)
This shows m,grl=12) =~ HO(X*).
Next we notice 7ogrl=1**1) — 7 grl=1) is an equivalence for s > 2 by applying 7, to the

fiber sequence

gri=stl) 5 grl=19) 5 X8 [—s+1]. (2.2.8)
Passing to lim, yields

Tzogr[*l"’o) o lign Tzogr[fl’s) o Tzogr[*l’z) (2.2.9)

and mygrl=H>) =~ HO(X*). Moreover for ¢t > 1, 7_ogrl 75> — 7_ygrl=#=1:°) is an equivalence
using the cofiber sequence ) .

grt1[—1] — grl-t°) — grl-t-1.00), (2.2.10)
Passing to colim, yields

70X = colim,7_ygrl %) =~ 7_jgrl=1:20), (2.2.11)



As Ty = T o Ty, this completes the proof. O

The following lemma will be helpful in the next section.
Lemma 2.2.7 If F* X is a complete filtration on X, then each 75, (F*X) is complete.

Proof. As there is a cofiber sequence in Fil(C)
B,(FX) - F*X - 78 | (F*X) (2.2.12)

the lemma now follows from the assumption and the fact Fil(€)2, ~ Fil (€)%,. O

2.3 Décalage

In this section we fix € a stable co-category with sequential limits and colimits, equipped with

a t-structure (Csq, Cop)-

Inspired by Deligne’s décalage operation [Del71], Levine considered a naive version of

décalage of cosimplicial spectra in [[Lev15], §6], in order to give a comparison between

the motivic Atiyah-Hirzebruch sequence and the Adams-Novikov sequence for the complex

cobordism spectrum. Later in [BMS19] this was again defined using Beilinson ¢-structure (cf.

[[BMS19], Proposition 5.8]). The equivalence of this definition with Deligne’s construction was

shown in [Ant24]. We will mainly follow the last reference in the section.

As discussed in the previous section, a filtration F* gives rise to a coherent cochain complex
e = gt IR s — 1] = gr *F*[—s] = gr * T F*[—s+ 1] — ... (2.3.1)

Apply the 7, functor and after suitable suspension yields a coherent cochain complex in the

heart €V of @

e D Mg 8 IFY s e P s o, qgr TR — L (2.3.2)

Definition 2.3.1 Let F* be a filtration. Consider the Whitehead tower with respect to the

Beilinson ¢-structure on Fil(C)
e = T2 Fr o B P D B (2.3.3)
By taking the realization, we get a new filtered object of €
o TR FY = |72, FY = |72, B — (2.3.4)

This is called the décalage of F*, and we denote Dec®(F*). If F* is a filtration on X, Since we

have natural maps 75, F* — F*, we then have a map
|2, F*| = [F*| = X (2.3.5)
hence Dec®(F*) is a filtration on X.
It's immediate to see the graded pieces of Dec®(F*) are given by
gr"Dec® (F*) =~ |7b (F*)|[n] (2.3.6)

as 72, 1 (F*) = 72, (F*) — 7% (F*) is a cofiber sequence.



Remark 2.3.2 The cochain complex of homotopy groups of F* with respect to the Beilinson ¢-
structure is denoted 78 (F*)*, which by (2.3.2) is

e > T8t o mer? o et — (2.3.7)
this is precisely the n-th vertical column of the E;-page of the spectral sequence associated

to F* as in [Lurl7]. This illustrates another interpretation of the décalage functor: the n-fold

suspension of realization of x5 (F*)*

Before proceeding to higher pages of spectral sequences, we give some important examples of

the décalage functor.

Example 2.3.3 If F* X is the constant filtration on X, then each 72, (F* X)) is a constant filtration
and so is Dec*(F*X) on X.

We already know that each cofiber sequence F*X’ — F*X — F*X” induces a long exact
sequence in Ch*(€7):

o 7 (FX7) = 7B (F*X7) = 78 (F*X) — B (F*X") = 78, (F*X’') - ... (2.3.8)

This in general does not break into short exact sequences as the connecting homomorphism is

not trivial. However, the following example is an exception.

Example 2.3.4 Let F* be a filtration. We have a cofiber sequence of filtrations
grie) — grlac) 5 grla.b) (2.3.9)
for —oo < a < b < ¢ < oo. Then this induces a short exact sequence
0 — w5 (gr)) — i (grl@®) — 7h (grl®?)) — 0 (2.3.10)
Indeed, the middle term expands to
Rt s FY—0— .. (2.3.11)

c—1
o= 0= G FT =T,

while the left and right terms are just truncations of this cochain complex.

Example 2.3.5 By the exactness of geometric realizations and previous example
Dec*® (gr[b’c)) — Dec*® (gr[“’c)) — Dec*® (gr[“’b)) (2.3.12)

is a cofiber sequence of filtered objects.

Let ins® : € — Fil(C) be the left Kan extension of the constant functor € — Fil(€) along the

inclusion {s} < Z°?. Concretely, we have

. 0 ifi>s
Flins® X ~ o (2.3.13)
Xifi<s

and all transition maps are the identity.



Lemma 2.3.6 The functor ins® : € — Fil(C) is t-exact with respect to the Beilinson t-structure.

Proof. As ins® lands in Fil,(€), it's enough to show it is t-exact on the coherent cochain complex
by Theorem 2.2.1. Under this equivalence, ins® X is the complex given by X|[s] in degree s and

0 elsewhere and is surely ¢-exact. O

Corollary 2.3.7 Let F* be a filtration on X. The filtration on Dec® (gr°F*X) is equivalent to

Ts_ 5180 F* X, In particular, one has

grlmoo) (Dec*(gr°F*X)) >~ 1. _,, gr’F*X

(2.3.14)
gr(=>°m(Dec® (grF* X)) ~ 7., er*F*X
Proof. It suffices to consider the case s = 0, in which we have
72, (gr’F*X) = 75, (ins"X) =~ ins® (7., X) (2.3.15)
by the previous lemma. Taking colimits finishes the proof. O

If we are not focusing on the filtration property of décalage, we will just write Dec(F*).

The most important usage of décalage functor is to build spectral sequences.

Definition 2.3.8 The E,-page of the spectral sequence associated to a filtration F* is defined

inductively to be

By (F*) = m,,,or °F*

(2.3.16)
B2 (FY) = B, 52 (Dee(F"))
together with the differential from (2.3.2):
At e FF = g, er IR
B (2.3.17)
drii-l o= d;t,s+2t.

Lemma 2.3.9 The construction in Definition 2.3.8 indeed gives a spectral sequence.

Proof. We need to show the E,  ;-page is the cohomology of E, -page. We do it by induction on
r and it’s enough to check it by r = 1.
E3!(F) = E; """ (Dec(F*)) = ., 1! (Dec(F*)) = .., (| (F*)][t]
(2.3.18)
= (| () & Ho*(np(F)7) = H* (B7(F"))

where the last isomorphism comes from Lemma 2.2.6. O
We introduce another construction of spectral sequences due to [[Lur17], §1.2.2]. The advantage
of this construction is that it does not assume the co-category € admits sequential limits and

colimits.

10



Construction 2.3.10 Let r > 1, consider the commutative square

F—s+r 3 F—s

|

F—s+1 N F—s—r+1
By taking the cofibers we get a natural map grl=57) — grl=s=7+1.=s+1) this fits into the
following commutative diagram

gr[—s,—s+2r) - gr[—s+r,—s+27‘) I gr[—s,—s+r)

J J J

gr[—s—r+1,—s+r+1) - gr[78+1,fs+r+1) - gr[fsfr+1,fs+1)
where the horizontal lines are cofiber sequences.
We set ES(F*) := im(7,,,grl "7t — 7, grl-s77+1.=s+D)) To construct the differential, we
firstly notice that the heart of a ¢-structure is (the nerve of) an abelian category, thus by epi-

mono factorization we have
s—r+1,—s+1)

[—8,—5-‘1—')”) \ s,t ¢ \ [—
Ts1+¢80 » B 7 T4t 8T

J/ dS7t E J/

7.‘.S_Hl_lgr[—.s—i-r,—s+2r) -y E;:;—r,t-i-r—l (SN 7.‘.S_H_1gr[—s—i—1,—5-{-7"—',—1)
where the outer square has homotopy boundary maps as vertical arrows and naturally

commutes.
On the E,-page, we have

im (ws S +tgr_s> — EDH(FY) (2.3.19)
and the differential coincides with the one in (2.3.2).

Lemma 2.3.11 [/ Lur17], Proposition. 1.2.2.7] The E, -page together with differentials in Construction

2.3.10 is a spectral sequence.

The main theorem of this section is the following comparison theorem. In particular, this proof

will be performed inductively and it already implies Lemma 2.3.11.

Theorem 2.3.12 [[Ant24], Lemma 4.24] For r > 1, there’s a natural isomorphism

By e DY (gl (F4)) & BSE (FY) (2.3.20)

T

compatible with differentials, where Effl (F*) denotes Lurie’s construction.

Proof. Inductively we need to show

E, %2 (Dec(F*)) 2 ES (F*) (2.3.21)
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We consider the following diagram arising from the functoriality of décalage, for simplicity we

denote gr][;’b) for grl®®) (Dec(—)) and gr[Fa’b) for grl»®)F* and we set s = 0 = t.

2 3 4

1
mogry " — mogry ey —— mogrp erp T —— mogrpgrp ™ ——— mogry " F*
B0 (F*) A B c E2(Dec(F*))
\[[ r,1) 5 - r+1£m) [ r,1) 6 [-r+1,1) [-7,1) 7 - r+1£) [=7r,00) 8 [=r+1,1) s
To&T — THEIp gry T) To8TD grp > mHgrp gy T To8Tp F

We will justify the marked morphisms separately.

1. The colimit of the fiber sequence arising from Beilinson ¢-structure

[0,r+1) [0,r+1) [0,r+1)

72081E — gy — T2, 8rp (2.3.22)
is by definition
gr][g 0 gr[FO AR gr[FO’rH) — gr](;()o’fl]gr][_g’rﬂ) (2.3.23)
Use Example 2.3.5 we see that gr](;w’*l] gr%) Y has a finite filtration with graded piece
grly ® Merg ~ 7 grs 0 < s <r by Corollary 2.3.7. This tells us grl, > grl™*" is in
C._; and thus 1 is an isomorphism.
2. Like the setting above, gr[O e gr[FO ™1 has a finite filtration with graded piece grio ™ grs, ~
T-_,gry and similarly grD )grg) ) s finitely filtered. The fiber sequence
O I - (2.3.24)

has a finite filtered fiber with each graded piece grj)’™ )

gry =~ 7o _,,,8r%,0 < s < r. Therefore
the fiber is connective and the map 2 under 7, is an epimorphism.

3. The fiber sequence

gr% gr[ﬂ_1 ) gr[0 ™) [F ) _, gr[ grgJ ) (2.3.25)
has a finite filtered fiber with associated graded piece |7° glr[r’L1 <) [s]| for 0 < s <. The

[r4+1,00)

cochain complex m8grp is of the form

B RN cA S NPTNIPY-y At (2.3.26)

with 7_,_;, eri™ put on the cohomological degree r + 1. Now as s < r + 1, H* = 0 and by

Lemma 2.2.6,
7w |mPgrll o g]| = Ha+s( Borlrtl: °°)) =0 (2.3.27)
for a < r+1—s. In particular, 7; = 0, hence the fiber is 1-connective and 3 is an isomor-
phism.
4. The cofiber sequence
gr][) gr[o ) gr%}’r)F* — gr[ )gr; o0l (2.3.28)

has a connective cofiber by the same nature of 3. Again by Lemma 2.2.6,

12



| mBgr o)) = Hobs (wggr;—m’—”) =0 (2.3.29)

for a > —1 — s. In particular 7, = 0 and 4 is an epimorphism.

5. Same as in case of 1, but as gr](;oo’fr] grg ~ 7 _, grp,—r < s <0, we conclude that
grly * grk ™ is in @, and 5 is a monomorphism.

6. Same as in case of 2, the fiber is however 1-connective and 6 must be an isomorphism.

7. Repeat the arguments in 3, we have the fiber sequence

grp, Vg™ o gl T g o g T g (2.3.30)

and the fiber has trivial 7, hence the map 7 is a monomorphism.

8. Asin 4, the cofiber of

I e B I e (2.3.31)

is 1-connective and 8 is an isomorphism.
Thus by standard arguments we have a chain of isomorphisms
EY (F*) + A — B« C — E%°(Dec(F*)) (2.3.32)

It remains to show this isomorphism is compatible with differentials staring from (0, 0). For

this, we firstly consider the following commutative diagram raising from fiber and cofiber

sequences

grl ['r’+1 2r+2) - gr][; oo)gr£r+1 ,2r+2) SN gr[r 2r) [T+1,2r+2) - gr[r 2r)gr¥+1,oo) SN gr][;,2r)F*
| | i T
¥’+1 ,2r+2) - gr[O 00) r¥+1,2r+2) s A < grg,2r)gr][;9,oo) gr][;,?r’)F*

l | l | l

gr%o 2r+2) gr% )gr[FO 2r+2) gr][g 2T)gr£(‘) 2r+2) gr%) QT)grL[? ) gr%) 2r) s
ar E?O ) gr][;),oo)gr%),mm or ][g r)g [0,7+1) gr[ ) [0 o) gr[ ) o

A exists since the lower 3 x 5-diagram has exact columns and is set to be the cofiber. The map

gr][; ’QT)gr[; +1,2r+2) — A exists since the composition
gr][; 27')gr[§'+1721‘+2) N gr][g 2r) r%)72‘r+2) - gr[o T gr%o 1) (2.3.33)

is nullhomotopic. Now using the long homotopy sequence and the commutativity of this

diagram we obtain the following diagram:

Wogr][;? ,r+1) Wogr][D oo)g ££) ,r+1) . gr[O ,7) [O r+1) ﬂ'ogr][) gr][;) o) Trogr][:(’),r)F*
O, (F) EYO(Dec(F*))
[r+1,2r42) [0,00) _[r+1,2r+2) B [r,2r) _[0,00) [r,27)
d T8 Ty’ U8R T, A > mogrp” grgt . mogrp FF d
E. [ (F) id al= id B! (Dec(F*))
ﬂ_lgr¥+1,2r+2) ; W_lgr][;“,oo)grgr+1,2r+2) > 1gr][; 27‘)g [g:+1,2r+2) ; 1gr[r 2r) ar [;+1,oo) > 1gr[r ZT)F
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where the middle 3 x 5-diagram and two side-trapezoids commute.
We claim the map « is an isomorphism and f is a monomorphism.

For a, we can argue it as of the map 2 above, the cofiber sequence

gr][;,oo)gr£;r'+1,2r+2) N gr][;),oo)grg‘+l,2r+2) _ gr][;J,r)grg‘+1,2r+2) (2334>
has a finitely filtered cofiber with graded piece ]wggrg t127+2) [s]| for 0 < s < r. Using Lemma

2.2.6, we see m, = 0 for a > —2 and thus « is an isomorphism.

For §3, note that the map fits into the following commutative diagram:
mogrn gry )~ mogry gy T — m_ygrngrp ) — m_ygry grp

l

7_‘_Ogr%)zr)gI_£§J,2r+2) — ﬂ_ogr][g,r)gr%),r+l) T A W_lgr§,2r)gr£(‘),27+2)
The same arguments as in 3 show that the left two and the right maps are isomorphisms and
this makes £ injective.

[O,OO)grL(‘),r-i-l

Now we do some diagram chasing: start from mgrp, ) the left big trapezoid commutes

by assumption and it would be enough to show the following sub-diagram commutes:

mogry gy —— mogry " F*
E° (Dec(F))
Wilgr][;),oo)gr¥+l,2r+2) d
o E """} (Dec(F*))

7_‘__1grg,oo)grg‘+1,2r+2) s 7I__1gr][;,27") F*
Indeed, this is reduced to show the commutativity of paths from ﬂogr][g ) gr%O o
w_lgrg ’2T)gr£9 ) going top and bottom rows respectively, and this is true by the injectivity of
the map g. O

We will return to this isomorphism in Chapter 5.

3 The stable motivic category

In 1980s, when trying to understand slices of algebraic K-theory, Beilinson and Lichtenbaum
conjectured the existence of motivic cohomology, aiming to give an analogue of singular
cohomology for algebraic varieties. Later in 1990s, Voevodsky and Morel defined their motivic
cohomology (of smooth varieties) as the cohomology theory represented by a motivic version
of Eilenberg-MacLane spectrum in the stable motivic category S (k), where k is a perfect field
of characteristic zero.

Generally speaking, motivic homotopy theory is the homotopy theory of smooth schemes
where Al is the interval object. We first study unstable motivic homotopy theory, whose objects

are the so-called motivic spaces, a reasonable analogue of smooth manifolds. Then we will
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introduce the stable motivic category following the language in [Rob15]. We discuss also the
homotopy sheaves of these motivic spectra and pay a special attention to connectivity of them.

We fix a quasi-compact quasi-separated base scheme S over a base field k in this chapter.

3.1 Motivic space

Let Smg be the category of smooth schemes of finite type over S. Let ?(Smg) = Fun(Sm¢, An)
be the category of presheaves of animae. Because of Yoneda lemma, the category Smg embeds

into it. We shall install a topology on Smg.

Definition 3.1.1 The Nisnevich topology on Smg is the Grothendieck topology generated by
Nisnevich coverings, i.e. those finite families {p, : U; — X} such that each p, is an étale map

and for any field £’, the map Spec £’ — X lifts to one of covering maps.
The Nisnevich site has an easier characterization by Nisnevich squares.

Definition 3.1.2 A pullback square in Smg
UxxyV —V

[

U — X
is called an elementary distinguished square, or simply Nisnevich square, if p is an étale map
and i is an open immersion, and p~1 (X —i(U)) — X — i(U) is an isomorphism with respect to

reduced scheme structures.

We shall mainly focus on sheaves on a Nisnevich site later, therefore it is convenient to have a

sheaf condition for a presheaf ¥ € P(Smy).

Definition 3.1.3

1. Let & be a presheaf on Smg, where S is a quasi-compact quasi-separated scheme. 7 is said
to have Nisnevich excision if F(0)) ~ * and for any Nisnevich square {U — X,V — X} in
Smyg, the induced square

F(X) ——— F(U)

|

FV) —— FUxxV)
is a pullback square in An.

2. 7 is said to fulfill Nisnevich (Cech) descent if for each Nisnevich covering 2 of X, the map
lim Mapap(s,, ) (C(U), F) = F(X) (3.1.1)

is an equivalence.
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Theorem 3.1.4 Let S be a quasi-compact quasi-separated scheme and F € P(Smyg), then the followings
are equivalent:

1. F has Nisnevich excision.

2. F fulfills Nisnevich descent.

If one of the conditions is fulfilled, then we say F is a Nisnevich sheaf.

Sketch of proof. We will use the fact that Nisnevich topology over Smg is hypercomplete (cf.
[[CM21], Corollary 3.27]), therefore, any Nisnevich descent is also a hyperdescent.
Next, we observe that the Nisnevich squares generate Nisnevich topology, this is [[MV99],
§3 ,Proposition 1.4].
Pick a Nisnevich square & = {U — X,V — X} and let ¢ : C(U) — X be its Cech nerve. Let
W :=U x x V and X’ be the pushout of U <~ W — V and k : X’ — X be the canonical map.
By definition, # satisfies Nisnevich excision if and only if & (k) is an equivalence and F ((}) ~
x. And by [[AHW17], Lemma 3.1.3] & satisfies Nisnevich descent if # (c) is an equivalence and
F(0) =~ *. If we write
C={c:CU)— X}U{e}
(3.1.2)
KX ={k: X — X} U{e}

where e is the canonical map from empty sheaf to the sheaf represented by the initial object in
Smg. Then it suffices to show every map in € is a K'-equivalence and every map in X is a €
-equivalence. This is shown in [[AHW17], Theorem 3.2.5]. See also [[Lur18], Theorem 3.7.5.1]
for a derived algebraic geometry version. O
Write Shv(Smg) for the oo-category of Nisnevich sheaves of animae. The unstable motivic

category is a certain localization of it.

Definition 3.1.5 The unstable motivic category F(S) is the localization of Shv(Smg) under
the collection of morphisms W := {X x AL — X} for any X € Smg in the sense of Definition
6.1.22. We denote F (S), to be the category of minimal pointed motivic spaces as constructed
in Remark 6.2.2.

Remark 3.1.6 Thanks to Theorem 3.1.4, we can also exhibit # (S) as a localization of P(Smg)
under the following morphisms:

1. (Al-invariance) X x A} — X;

2. £(U) H;(UXXV) & (V) — & (X) for any Nisnevich square {U — X,V — X},

3. the unique map 0 — & (0).

where & : Smg — P(Smyg) is the Yoneda embedding functor. This gives us a localization
functor L, : P(Smg) — FH(S).

16



Theorem 3.1.7 There is a closed symmetric monoidal structure on F (S), given by the localization of

the section-wise smash product.

Proof. By Proposition 6.4.5 we need to check firstly 7 (.S), has finite products, thus the Cartesian
product induces a symmetric monoidal structure on # (S), via the smash product. But it is just

the fact that A'-invariance is preserved by products (and colimits).

Now for closeness. In order to show the product is a left adjoint, we invoke Theorem 6.5.8
(notice H(S), is presentable as an accessible localization) and show it preserves small colimits.
Let : Shv(Smg) — H(S), be the localization functor with ¢ : 7((S), — Shv(Smg)_ the right

adjoint, using [ o + ~ id we calculate
(colim, ) ® § =~ (colim, (115)) ® (115)
~ I((colim ;%) ® .5)
= l(colim; (17; ® 19))
=~ colim,; (It(F; ® G)) = colim,(F ® G).

(3.1.3)

3.2 P'-invariance and stabilization
Just like motivic spaces resemble the classical homotopy category of spaces, the stable motivic

category is a generalization of spectra. In order to define the stabilization of #(S),, we need

to understand the suspension functor first.

Proposition 3.2.1 Viewing each space X € An as a constant sheaf, the suspension functor in J{(S),

is given by smash product with S*.

Proof. By Theorem 3.1.7 the unit of the symmetric monoidal product is the constant sheaf S° =
* | [ *, the definition of suspension functor tells us all. O

By general theory in §6.3, we define:

Definition 3.2.2 The co-category S# ' (S) is defined as the stabilization of (S),, i.e.
Sp(H (S),). The objects in this category are called the $!-motivic spectra.

Instead of using the direct analog S# 5" (S) of 87, we would like to invert another important
circle in algebraic geometry, namely the Tate circle G,,, = Spec k[t,t~!]. We note that S* A G,,, ~
P!. Indeed, asp: A' 5Pl z (1:2)andi: Al - P! x> (z:1) is a Nisnevich covering of

P!, and there intersection is G,,-

Proposition 3.2.3 (Voevodsky) Let € be a symmetric monoidal co-category and X € C. The stabiliza-
tion Stab x (€) is the colimit of the sequence
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e e85 (3.2.1)

If the action of cyclic permutation on X @ X @ X becomes an identity map in Staby(C), then
Stab x (€) has a canonical symmetric monoidal structure and the functor € — Stab . (C) sending X to

an invertible object is monoidal.
Proof: see [[Rob15], Proposition 2.19]. O

Lemma 3.2.4 In H (S), the 3-cycle map o : P1 AP AP — PP AP AP is homotopic to identity,

ie. Pt is symmetric in H(S),.

Proof. It suffices to show a transposition on P! A P! is homotopic to —id, then we can use the
fact that a 3-cycle in S5 is a composition of 2 transpositions.

Consider the SL,(Z) action on P! A P! and we see the two matrices are Al-homotopic:

(? (1)) o~ (‘01 (1)) (3.2.2)

since they can be related with elementary transformations. Indeed, consider the matrix

(-0
(? é)A = (_01 (1)) (3.2.4)

Thus for a transposition 7 we have: 7 ~ —id A id ~ —id. O

and we have

Definition 3.2.5 The stable motivic category SH (S) is the colimit of the following sequence:

PiA— PlA—

7(S), 205 g008), 25 ms), 25 (3.2.5)

together with a symmetric monoidal functor X3 : #(S), — S#(S) which sends P* to an

invertible object. Moreover, §7((S) carries a canonical symmetric monoidal structure.

Remark 3.2.6 As 7 (S), is presentable, the functor X33 preserves all small colimits, so by

Theorem 6.5.8 there is a right adjoint Q3% which preserves all small limits.

In order to give a reasonable definition of “inverting P'”, we need to use the construction
given in [[Rob15], §2.1], which not only proves the stability of resulting category but is also
accompanied with a nice universal property to work with.

For every small symmetric monoidal co-category €, we shall denote CAlge the category of
small symmetric monoidal co-categories 2D with a monoidal structure map € — 2. We have

a full subcategory spanned by those D’s whose structure map sends X € € to an invertible
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object, written as CAlgj . By [[Rob15], Proposition 2.1], there is a left adjoint of the inclusion
CAlgd < CAlge, written as Le x

Definition 3.2.7 [[Rob15], Definition 2.6] Let € be a presentable symmetric monoidal oco-
category and let X € €. The formal inversion of X in € is the presentable symmetric monoidal
oo-category €[X '] defined by the pushout
clx=¢ J] 2P(Lreoiaio.free(A0]))) (3.2.6)
P (free® (A[0]))
in CAlg(Pr%), where free® (A[0]) is the free symmetric monoidal category generated by * and

we interpret the monoidal map free® (A[0]) — € to be the object X € €.

Note by [[Rob15], Proposition 2.9], the formal inversion is canonically equivalent to the cate-
gory £i'x(€), where L5 is the restriction of £ x onto CAlg(Pr), making it initial among
all presentable symmetric monoidal co-categories such that X is invertible. This suggests an
equivalence of this formal inversion with the more familiar notation of stabilization.

Since the tensor product in Pr’ preserves all small colimits by [[Lur17], Proposition 4.8.1.17],
the canonical map € — €[X '] produces a forgetful functor Modgx-1(Pr") — Mode (Pr")
and the base change functor £5"x := (— ®¢ C[X']). This base change functor is monoidal, left

adjoint to CAlgg|x-1)(Pr*) — CAlge(Pr"). We have an adjunction pair
F : CAlge x—1)(Prt) & CAlge(Prh) : G5’y (3.2.7)

Theorem 3.2.8 [ Rob15], Corollary 2.22] Let € be a presentable symmetric monoidal co-category and
let X be a symmetric object in €. The map of C-modules

Lgix (M) — Lgix (Stabx (M) — Stabx (M) (3.2.8)

induced by adjunction (3.2.7) is an equivalence. In particular, the (underlying oco-category of) formal

inversion C[X '] is equivalent to Stab x (C).
Corollary 3.2.9 The stable motivic category SF(S) is indeed stable.

Remark 3.2.10 There is also an adjunction pair of suspension and desuspension between
S8HS'(8) and 8K (S). In fact, by using the same technique as in Definition 3.2.7 we see that
8H(S) =~ 8HS' (S)[G;,}], see for example [[ABH24],2.2.3].

Finally we have the following universal property of SH (S):

Proposition 3.2.11 [[Rob15], Corollary 2.39] Let € be a pointed presentable symmetric monoidal oo-

category, the composition with stabilization

Fun®L (87 (8),€) — Fun®(#(S),,C), F = F o 3% (3.2.9)
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is fully faithful with essential image consisting of those symmetric monoidal functors F' : 7 (S), — C
which are P1-stable, i.e. the homotopy cofiber of F(S) — F(P) induced from S =5 P is ®-invertible.

Remark 3.2.12 Many arithmetic cohomology theories turn out to be not A'-invariant, therefore,
the condition A'-invariance in motivic homotopy theory is too strong for this context. In fact,
if we take the same formal inversion procedure on the oo-topos St,, the resulted co-category
is a reasonable generalization of motivic spectra as by [AHI25]. We also note that in this case,
the first construction as in Proposition 3.2.3 does not work any more, hence computations are

more difficult.
The analogue of homotopy groups of spectra are homotopy sheaves.

Definition 3.2.13 Let E € 87((5), we shall denote S/ := (S!)"*™? A G/ to be the motivic (i, 5)
-sphere. The (i, j)-th homotopy sheaf 7, ;(E) of E is the sheafification of the presheaf

X €S8mg [E3X,,EAS ] (3.2.10)

87(S)
where [X, Y] is the 0-th truncation of the mapping space, i.e. the set of morphisms in the

homotopy category.

Definition 3.2.14 For E, F' € $#(S) and X € Smg, we define
1. the E-cohomology of X as

EP9(X) = [S31X,, BASPY o (3.2.11)
2. and the E-cohomology of F as
EP4(F):=[F,E N Sp’q]gﬂ(s). (3.2.12)
3. Dually we can define the E-homology of F as
E,  (F):=[EN S_p’_q,F]Sﬂ(S). (3.2.13)

3.3 Al-connectivity theorem

Morel’s stable Al-connectivity theorem [[Mor05], Theorem 6.1.8] serves as a useful tool for
determining homotopy sheaves of a spectrum. It is later essentially used for showing equiva-
lences of effective covers and slices of spectra, for example, Corollary 4.4.2.

Morel established the theorem over a perfect base field. This was later generalized under a
series of papers, to a Noetherian scheme of finite dimension by [Dru22] and to a qcqs scheme
of finite valuative dimension by [BK25].

For our purpose we only need the theorem for a base field k. We then give a proof here following
the strategy in [Ayo21] and [BM23], after some preliminary definitions. In this section we fix a
base field k.
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Definition 3.3.1 Let 7 be a Grothendieck topology on Sm,, let ¥ € P(Sm,,)_be a pointed
presheaf. 7 is said to be locally n-connected (with respect to 7) if the 7-sheafification of 7,7,

ie, of Ut m,;F (U) is trivial for any j < n.

Unless otherwise stated, locally n-connected always means locally n-connected with respect to

the Nisnevich topology. We state the main theorem of this section.

Theorem 3.3.2

1. (Unstable A'-connectivity) Suppose F € P(8my,)_is locally n-connected, then so is the motivic
localization of F in H (k),.

2. (Stable A'-connectivity) Suppose F € P(8my,)_is locally n-connected, then so is the motivic
spectrum 323 (L, F) € SH (k).

mot

Notice the stable connectivity theorem follows from the unstable one immediately by how
we defined the homotopy sheaf of a spectrum in Definition 3.2.13 (see also [[Dru22], §2.1]).
Therefore, we only prove the unstable one.

There are two technical definitions of connectivity that are used in the proof.

Definition 3.3.3 Let ' € P(Sm,)_be a pointed presheaf.

1. & is said to be generically n-connected if for any connected X € Sm,, with generic point ny,
m;F (nx) = 0 for any j < n.

2. F is said to be n-preconnected if for any local essentially smooth scheme X over k with

dimension dim X = m, ;5 (X") = 0forany j < n —m, where X" is the henselization of X.

If # islocally n-connected, then & is n-preconnected. And the definition of preconnectedness is
a Nisnevich local condition, therefore a presheaf is n-preconnected if and only if its Nisnevich

sheafification is.

Lemma3.3.4 Let ¥ € Shv(Sm,) bea Nisnevich sheaf. If F is n-preconnected, then for any essentially
smooth k-scheme X of dimension d, m;F (X) = 0 for any j <n —d.

Proof. For every point z € X, we have dim {z} < d — dim(X,,). The statement now follows from
[[CM21], Theorem 3.30]. O

Theorem 3.3.5 [[ Ayo21], Théoreme 4.12] If F € P(Smy,)_ is n-preconnected, then so is its motivic

localization.

Proof. Write Sing® (F) := |F(— x A®)| the singular construction as in [[MV99], §2.3], then by
[[AE16], Theorem 4.27], the motivic localization L, is the countable iteration (aNiSSingAl >°N.
It suffices to check Sing®" preserves preconnectedness. Now for a Nisnevich sheaf & and X an

essentially smooth scheme of dimension d, Lemma 3.3.4 implies that 7,7 (X x A™) = 0 for any

21



j <n—m — d. Now we can conclude using the Bousfield-Kan spectral sequence associated to
the the tower

e F(X X A™) = F(X x AT — (3.3.1)

(]

Proof of Theorem 3.3.2. As F is locally n-connected, F is n-preconnected. Theorem 3.3.5 indicates

that the motivic localization L, is also n-preconnected. Since preconnectedness implies

mot

generically connectedness (a generic point has always dimension 0), we know L, ¥ is gener-

mot

ically n-connected.

Now we can check the vanishing condition Zariski-locally for z € X. Inspect the definition,
we can assume X is local, connected with generic point ny. We use the Bloch-Ogus-Gabber
theorem for effaceablity [[CHK97], Theorem 5.1.10], this gives us

ker(m; (L, F (X)) = 7, (Lo F (nx))) =0 (3.3.2)

mot mot

for any ¢ < n. Indeed, the assumption SUB1 and SUB2 for L, before the statement of this

mot
theorem is fulfilled, as we can see that the commutative diagram
Jx 00
AL, —— P +—— X

ANV

X
induces an A'-homotopy of maps j% and (co o my)* from L, ., F (P%) to L, F (Ak).

mot mot

Now, since L7 is generically n-connected, we have 7;(L,.F (nx)) =0 for i <n, hence

mot mot

7 (Lot F (Spec Ox ) ) = 0 for all z, this proves the theorem. O

mot
As an application, we can define a notion of connectivity of motivic spectra, and show this

defines a ¢-structure on SF (S).

Definition 3.3.6 The homotopy ¢-structure on S# (S) is given by

SH(S)sg={E € 8H(S) : m; ;(E) =0,Vi—j <0}
SH(S)co = {E € 8H(S) : m; ,(E) = 0,¥i —j > 0}. (3.3.3)

(2]

Theorem 3.3.7 The homotopy t-structure is indeed a t-structure. And all truncation functors are

symmetric monoidal with respect to the smash product on SF(S).
Proof. Write 7,(E); = m;_, ;
0,Vi < 0, which corresponds to the smashing with (S!)"". Using the adjunction in Remark
3.2.10 we see that m;(E), = 7; (ngm (E A S**)) Therefore, it suffices to show that

(E), the definition above for S# (S) can be rewritten as m,;(E), =
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SHE' ()5 = {E € 8H5'(S) : m(E) = 0,Vi < 0}

(2

. . (3.3.4)

SHS (S)co = {E € 875 (S) : m,(E) = 0,Vi > 0}
defines a t-structure on 7' (S). Now let E be a §!-spectrum and E. , be the non-negative part
of E induced by the Postnikov truncation on 87, therefore m;(E,) = 0, Vi < 0. By Theorem
3.3.2 L (Esg) is also —1-connectedsl. Hence we have a split exact sequence in P(Smg, $#):

Lyoi(Esg) = Esg — E. (3.3.5)

Since L, preserves finite colimits, we see that E. , is also in SH® (9).

We define the localization functor
L:8HS'(S) = SHS'(S)

(3.3.6)
E By

and since its essential image is closed under extension, by Proposition 6.2.23 itis a t-localization

and induces a t-structure. O

3.4 Some motivic spectra

The first important spectrum is the sphere spectrum, which plays the role of unit of the

symmetric monoidal structure on SH (S)®.

Definition 3.4.1 The motivic sphere spectrum Sg € SH(S) is given by £23S°0, i.e. the P*

stabilization of the constant sheaf S°°.

The stable motivic category allows us to define cohomology theories on (smooth) varieties. We
shall consider some of them, while concentrate on the geometric nature.
One could ask whether there is an analogue of the Eilenberg-MacLane spectrum H, € S# in

the motivic world, whereas

H, (n) Zifi=n (3.4.1)
T, n)= A
i 0ifi#n

However, since the homotopy sheaf of a motivic spectrum is bigraded, it is impossible to
directly construct a similar spectrum. Therefore we will define the motivic Eilenberg-MacLane

spectrum My, as the spectrum representing Voevodsky’s motivic cohomology in [Voe98].

Construction 3.4.2 Let R be a regular k-algebra for k a field and S = Spec(R). Let Z;, : Smg —
Fun(Smg, Ab) be the functor such that for X,U € Smg, Z,,(X)(U) is the free abelian group
generated by finite correspondences from U to X, i.e. by those closed irreducible subsets of
U x X which are finite and surjective over a connected component of U.

Let C,Z,,(X) be the simplicial presheaf U - Z,(X)(U x A®) and C,Z,,(X) be the associated

chain complex of presheaves. By Dold-Kan correspondence, C,Z,(X) is quasi-isomorphic to
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C.Z(X). By [[MVWO06], Corollary 2.24] this chain complex is Al-invariant. By [[MVWO06],
Lemma 6.2] Z,,(X) is an étale sheaf and therefore also a Nisnevich sheaf. We therefore get a

functor L : Smg — H (S) by sending X to C,Z,,(X).

Since for every morphism f : U — X, the graph I'(f) is a finite correspondence, we get a map
I'(X) : X — L(X) by Yoneda embedding. In this case, the exterior product on spaces induces
the smash product in #(S), and we have:

. . TEHAd y L
St i ST A L(SW) —— L(SY) A L(S™) — L(Si*+14)

. T(G,)Aid N o
Xg, G,, A L(S") ——— L(G,,) A L(S*) — L(Sz+1,]+1)

(3.4.2)

Definition 3.4.3

1. The motivic Eilenberg-MacLane spectrum My, is X3 L(S*!) € $7(S). It can be seen as a
(S, G,,)-bispectrum whose (i, j)-th degree is given by L(S**7+7).

2. The motivic cohomology of a spectrum E € §# (S) is given by

HP9(E) = [E,SP9 A My, (3.4.3)

(S)

Remark 3.4.4 Bloch first gave a possible construction of motivic cohomology of smooth vari-
eties over a field k using a complex built from algebraic cycles in [Bl086]. Voevodsky proposed
Construction 3.4.2 in the context of motivic homotopy theory and showed itis related to Bloch’s
cycle complex as in [Voe04] and [Lev08].

Spitzweck constructed a &, -ring spectrum M, € SF(Z) as in [[Spil8], Definition 4.27]. For

any integral scheme S with f : S — Spec Z, the &£__-algebra Mg := f*(My) € SH (S) becomes

a module over M, and is a well-behaved A!-motivic cohomology theory.

One of the key features of My is that it is the zeroth slice of the slice filtrations (s. §4.1) on
KGL, the spectrum representing algebraic K-theory defined later. This is the approach used in
[BEM25] to define an A'-motivic cohomology over any qecgs scheme, using Weibel’s homotopy
K-theory KH instead of K. On regular schemes, this recovers Voevodsky’s construction.

In [Bou24]| a motivic cohomology theory over any qcqs scheme was constructed combining
[BEM25] and trace methods. This theory is in general not Al-invariant, and after A!-localization
this matches the construction in [BEM25], [Spil8] and [Voe98] as shown in [[Bou24], §6].

The following spectrum plays an important role in this thesis.
Let S be a qcqs scheme. As usual, for a vector bundle £ — X over smooth scheme X € Smyg,
we can define the Thom space Th(¢) = &€ / (£ — X) € Shv(Smg)_pointed at the image of & —

X, where X is embedded as the zero section. Suppose we have &, — X; and &, — X, then
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Definition 3.4.5 Let
BGL,, = Gr,, := lilgn Gr,, (A™F) (3.4.5)

be the Grassmannian of n-dimensional affine subspaces and +,, the tautological bundle on it.
The product A! x v,, — BGL,, is classified by pullback of the canonical map BGL,, — BGL,, .,

and 7, ;, this induces a bundle map A® x v,, — 7,,,1, and by (3.4.4) a structure map
Th(A') A Th(y,) =~ P* A Th(y,,) = Th(v,41)- (3.4.6)

The algebraic cobordism spectrum MGLg € §7(S) is defined to be
MGLg := colim, 557585 Th(,,). (3.4.7)

Definition 3.4.6 Let S be a regular scheme. Using the same notation as in Definition 3.4.5, we

can define the algebraic K-theory spectrum KGLg € 8H(S) as

KGLg := 2% L, (Z x BGL) (3.4.8)
where BGL is the sequential limit of

... > BGL, < BGL,,,; < ... (3.4.9)
and L, ,(Z x BGL) the motivic localization of Z x BGL as in Remark 3.1.6.
The structure map is given by

B:PYAL,,(ZxBGL) = L_,(Z x BGL) (3.4.10)

representing the Bott element in K°(P* A L, (Z x BGL)).

Remark 3.4.7 The &_ -ring structure of MGL (and KGL) will be handled later systematically
via the construction of motivic Thom spectra. However, there’s also a base independent &__-

ring structure on KGL as proven in [NSO15].

We introduce the notion of oriented spectra in § (S) and show that MGL is actually universal
among those. We first state an important theorem regarding normal bundles: the homotopy

purity theorem.

Theorem 3.4.8 [[MV/99], §3, Theorem 2.23] Suppose there is a closed embedding of smooth schemes i :
Z < X. Let Ny 5 be the normal bundle of Z in X, then

SRTh(Ny ) ~535(X / X —i(2Z)) (3.4.11)

Definition 3.4.9 Let (E, , 1) be a ring spectrum in 87 (S) and i : (P§, 00) — (P$°, 00) be the
inclusion as pointed spaces. An orientation on E is a class ¢ € E*1(P&°), i.e., the (2,1)-th E
-cohomology of P!, such that i*(c) = 15, here we view E*!(Pg) = E%°(Sg). A pair (E,¢) is

called an oriented spectrum.
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Note that MGLg is canonically oriented by the class
T U PS° &~ Y9 Th(vy;) — MGLg A P§ (3.4.12)
since the restriction of this map on (Pg, o) is
229800 = £ Th(v,) — MGLg (3.4.13)

by homotopy purity theorem. Moreover, this orientation is universal as we can see from the

following theorem.

Remark 3.4.10 By similar arguments KGL is also canonically oriented. But there is also an
algebraic counterpart of real topological K-theory, just like KGL being the analogue of complex
topological K-theory. (s. Theorem 4.4.7) This is the so called Hermitian K-theory spectrum KO
as constructed in [Hor05] together with a motivic real Bott periodicity. Unlike KGL, KO is not

oriented.

Theorem 3.4.11 [[NS(X09], Proposition 6.2 & Corollary 6.7] Let E € SJ{(S) be a ring spectrum, there

is a bijection of ring spectra maps p : MGLg — E and orientations on E, given by ¢ + ¢* (z™CL).

One last motivic spectrum needed to state our main theorems is the motivic Brown-Peterson
spectrum constructed in [Vez01].
Fix a prime £ and let MGL ,, be the Bousfield localization of MGL at £ and L : MGL — MGL,,

the localization map. We have an induced isomorphism
L* : MGL{;; (MGL, ) — MGL{;} (MGL) (3.4.14)

by [[Lurl0], Lecture 20, Example 4]. Let 2MGL be the canonical orientation of MGL, then MGL( 0
is oriented by L(z) =: z(,. As of [[Rud98], VIL.6.2], we have an associated formal group law
F,, on MGL}, = & MGL{,".
Recall that a homomorphism between formal group laws F' and G is a power series f(z) such
that f(F(z,y)) = G(f(x), f(y)). If the coefficient of z is invertible, we say f is an isomorphism,
and if the coefficient of z is 1, we say f is a strict isomorphism. We call a strict isomorphism

from F to the additive formal group law z + y the logarithm of F.

Definition 3.4.12 Let £ be a prime. A formal group law F over a Z, -algebra is called ¢-typical

if its logarithm takes the form . a;z" with ag = 1.

In order to have a direct analog of topological Brown-Peterson spectrum in chromatic homo-
topy theory. We want to have a universal ¢-typical formal group law (see also the discussion

before Corollary 4.2.7). We use the following theorem due to Cartier:

Theorem 3.4.13 [[Hnz12], 16.4.14] Let A be a Z,-algebra, then every formal group law over A is

strictly isomorphic to a {-typical group law over A.
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Set A = MGLY,, in the above theorem, we can assume F, /¢-typical. By Theorem 3.4.11 this is
() ()

related to a map

The unique ring spectra map

such that L* (e(g)) = e is called the motivic Quillen idempotent. Since e, is associated to an ¢-

typical formal group law, it is idempotent by [[Haz12], 31.1.9].

()

mot

Definition 3.4.14 The motivic Brown-Peterson spectrum BP, /. at a prime ¢ is defined as the
sequential colimit of

€(e)

) )
.. — MGL() — MGL(; — ... (3.4.17)
(£)

mot

In particular, BP,;; is a direct summand of MGL,).

As shown later in §4.2, we can define the motivic Brown-Peterson spectrum directly from
motivic Landweber theory proven in [NS@09], assuming the Hopkins-Morel-Hoyois isomor-

phism. However, the discussion here provides an explicit construction.

3.5 Thom spectra

In this section we want to establish an £_-ring structure on MGL over any base scheme S.
The result is crucial later in the proof of our main theorem Theorem 5.2.1. A priori, Definition
3.4.5 already gives us a hint on constructing ring structure using the induced map ~,, x v,, —
Yn+m- But this approach is computationally overwhelmed and does not directly give us an
elementin CAlg(8#(S)). Instead, we follow the approach in [[BH21], §16] and define a motivic
counterpart of the Thom spectrum functor.

Let SH : Smg — CAlg(Pr”) be the stable functor constructed in Definition 3.2.7, note this
functor is by construction a spherical presheaf in the sense of Proposition 6.5.13.

We write Span := Span(Smg, all, fold) as the category of spans defined in Definition 6.6.1. In
view of Proposition 6.6.4, $# is a product-preserving functor S : Span — Pr’. In fact, there
are more good properties of this functor:

In order to build multiplicative structures, we need to borrow some concepts from the six-

functor formalism. This was mainly done by Ayoub in [Ayo07].

Proposition 3.5.1 [ Ayo07], §1.4.1]

1. For any X,Y € Smg we have SH(X[[Y) ~ SH(X) x SH(Y), thus a fold map V :Y — Z
induces a functor Vg : SH(Y') — SH (Z) by smash product.

2. For any f:Y — X smooth in Smg, we have two symmetric monoidal (with respect to smash

product) adjunction pairs

27



fro8H(Y) S5 SH(X): f,
(3.5.1)
&

fi i SH(X) S SH(Y) : f~.
And fy, f* satisfy the projection formula
fi(AN f*B) ~ f,(A) A B. (3.5.2)

3. For any Cartesian square

/

g
X — X

o
g
Y —— Y
where f and f" are smooth we have smooth base change, i.e.
Ex} : fﬁ’(g')* = g fy (3.5.3)
is an equivalence.

4. [[BH21], Proposition 5.10] for u, v smooth and ¥V, V"’ fold maps in the commutative diagram

f %
W < Y’ > 7'
f v
X < Y > Z
there is a distributivity transformation
Disty o : u, Vg (f)" = V@(ﬂ-y)ﬁ(ﬂ-w)* (3.5.4)

and this is an equivalence if the right square is a pullback and Z' = Ry, (W x x Y') is a Weil restriction
in the sense of [[BH21], §2.3].

Proposition 3.5.2 For any X € Smg, SH (X) admits sifted colimits and ST lifts to a functor in

sift
Catd'.

Proof. Note first for any X, S (X) is cocomplete and thus admits sifted colimit. In order to
lift S#, we need to show that for any X <i Y Z) Z, where f is smooth and V is a fold map,
the induced map Vg o f* : $H (X) — SH (Z) as in Proposition 3.5.1 preserves sifted colimits.
As a left adjoint, f* preserves all colimits and since V is induced from the smash product, it

commutes with sifted colimits. O

Theorem 3.5.3 Let £ be the collection of smooth quasi-projective morphisms in Schg. There is a strict

natural transformation

M : By (L5 ) = SH (3.5.5)
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extending

Lisge = SH, f f (3.5.6)

by objectwise sifted cocompletion and M preserves colimits.

Proof. We give the proof in amount of [[Ban25], Theorem 2.20]. Let Fun (A, Span) C
f

Fun(A', Span) be the full subcategory generated by spans X « Y Y, Z with fe L. Lets,t:

Fun(A!, Span) be source and target functors. The composition of S# with evaluation ev :

Fun,(A',Span) x A! — Span yields a natural transformation
©:8H os— SH ot :Fun,(Al,Span) — Catsilt, (3.5.7)

Suppose E : & — Span®® is a Cartesian fibration classified by §7(, then ¢ can be viewed as
amap ¢ : s*E — t*£ in Fun (A, Span)®™ as [[Lur09], Definition 3.3.2.2]. For a smooth map
f:Y = X in £, the fiber of ¢ over f is the pullback f*: SH(X) — SH (Y). By Proposition
3.5.1, it has a left adjoint f,. By [[BH21], Lemma D.3], the fiberwise adjoint of ¢ gives a relative
adjunction

Yt & 7€ . (3.5.8)
On components, 1 encodes the map f, by construction, therefore the naturality follows from

the smooth base change Ex;. We consider the following diagram

P X
& by §*E s &

t*FE
s*FE E
s°P

Fun,(A?, Span)” ——— Span®

where the square is Cartesian by construction. As a Weil restriction [[BH21], §2.3], s is a
coCartesian fibration, and therefore s°P o t*E is a Cartesian fibration, and so does x ¢ ¢, its fiber

over X € Schg is a functor

(£x) 550 = SH(X), (F Y = X, P € SH(Y)) > f,P (3.5.9)

where (L) Jsc 18 the Cartesian fibration classified by $J. It remains to check x o 1 preserves
Cartesian edges.
We inspect the behavior of s° o t*E in detail. Let e be an (s°P o t* E)-Cartesian edge, then t* E(e)

is the opposite of an edge in Fun (A, Span) of the form

W < Y’ > 7/
id id id

4 f/ 4 \v&d 4

W ( Y/ ) /7
g u’ u

>
<
N




where the down right square is a pullback square and Y’ = Ry, ,(W xx Y) x; Y and Z’ =
Ry ; 2(W x x Y). Since e is a Cartesian lift of t*(E)(e), it is of the form

o <ZeZ/i—d>Z’,H> o (XeWi—dH/V,F) (3.5.10)

with H € 8H (Z') and F € 8F (W), where « consists in the data in the diagram above together
with an equivalence H ~ Vg (f')"F.
By commutativity x(¢(e)) is an edge (Z,uﬁH) — (X,gﬁF) is given by (X <Y — Z)°? and
uyH — Vo f*g, F as the composition of
N Dist, Ex

wH — w,Vy(f')'F — V®(7ry)ﬁ(7rw)*F - Vg g F (3.5.11)
where 1y : Y xx W — Y and 7y, : Y x y W — W are projections. By the last two statements
of Proposition 3.5.1 we see this is indeed an equivalence, thus x(¢(e)) is E-Cartesian.
Now we can restrict the functor x o4 to the wide subcategory £ s, in £;g4,. Finally Propo-

sition 3.5.2 together with Proposition 6.5.13 gives a lift
M : By (L5 ) — SH (3.5.12)

of x o 1 by objectwise sifted cocompletion. O

Definition 3.5.4 The colimit-preserving functor Mg : R, ((Sm s) ) — SH(S) is called the

/SH
motivic Thom spectrum functor.

Remark 3.5.5

1. Notice that R, ((Sms) /5}[) ~ Ry(Sms) o = Bo(Smi) g, by [[ABG18], §5.3], where S5
is the functor sending a scheme S to the core of S# (S) as defined in Definition 6.1.15.

2. Let X € B (Smg) and ¢ : X — SH be a natural transformation. Since X is a colimit of
representable objects, we have ¢ =~ colim,;_, x¢ o o and since Mg is colimit-preserving and

the extension of (Smg) 150 We have

Mg(p) ~ COIimf:UaS,an(U)fﬁ90U<a>' (3.5.13)
3. [[BH21], Proposition 16.9] The Thom spectrum functor Mg automatically satisfies Nisnevich
descents, butis not always Al-invariant. On the other hand, it is plausible that the restriction

of Mg onto P(8myg) . . is Al-invariant. This is currently unknown.

/Sph

Let Vect(X) be the symmetric monoidal oo-category of vector bundles over X € Smg, with

symmetric monoidal structure given by direct sums. We have a symmetric monoidal functor

Vect(X) — Shvy, (Smy), & — Th(E) (3.5.14)

and this is natural in X. As localization and stabilization are symmetric monoidal, we obtain

Vect(X) — Sph(X), £ - NS Th(€) (3.5.15)
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still natural in X, where Sph(X) is the anima spanned by invertible objects in S (X)~. And

this gives us a natural transformation

Vect — Sph : Span — CAlg(An). (3.5.16)

Since Sph(X) is an anima, by taking the group completion of Vect(X), we have the factorization

Vect — Sph

T A

s |

s .
s

s |
. J

, |

s |

s

Vect®? — K

by Proposition 6.6.6, since K is a right Kan extension of Vects? and as a Zariski sheaf, Sph is

the right Kan extension of its restriction onto affine spaces.

Definition 3.5.6 The above natural transformation j : K — Sph is called the motivic J-homo-

morphism.

Proposition 3.5.7 Let e : K° < K be the injection of rank 0 part of algebraic K-theory. The bundle ~y :

BGL — K° representing A'-localization of tautological bundle induces an equivalence in SH (S):

Proof. We will still focus the case when S is a regular scheme. The general case also follows
from smooth base change to Spec Z.

By Remark 3.5.5 and the fact that K is an Al-invariant sheaf on regular schemes (see e.g.
[[TT90], Theorem 10.8]), Mg (j o —) inverts A'-homotopy, satisfies Nisnevich descents and has

the explicit representation

Mg(jeoeory) =~ COlim(XqX)(pX)ﬁ(Zfﬁ Th(yx)) = MGLg. (3.5.18)

It remains to show 7 is already Al-invariant, for this, we consider the commutative diagram

BGL —— K,

B,GL —— K°
where K the connected component of 0 in K° and B, GL the étale classifying space of GL.
[ is a motivic equivalence by [[MV99], §4, Proposition 2.6] and g is a Zariski equivalence.
Therefore, it suffices to compare L1 BGL — L, K, on affine covers. But it is an equivalence as

a homological equivalence between connected H-space. O

Using this equivalence we can equip a commutative algebra structure on MGLg.
Corollary 3.5.8 The algebraic cobordism spectrum is equipped with an £ -ring structure.

Proof. Since Mg is colimit preserving, it sends objects in CAlg (?E(é’ms) to objects in

j52c)
CAlg(8H(S)). It remains to check that the motivic J-homomorphism on zeroth summand is
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a commutative algebra object in A;(Smyg) We observe this follows from the following

/8T
lemma, which is purely algebraic and has nothing to do with our main purpose. O

Lemma 3.5.9 [[BH?21], Proposition 16.17] There is a functor

M|, : R (Span®),__ — CAIg(TE(SmS) (3.5.19)

jox)
induced by the target functor t : Fun ;(A', Span) — Span, where Fun ;(A', Span) is the full subcat-

/83

egory generated by X <Y =Y for f a smooth quasi-projective morphism.

Remark 3.5.10 This £ structure is different from the one defined in [GS09] by inverting the
Bott element in every stage of BGL. In fact, [HY20] shows that the two structure must differ
after complex Betti realization (see also Theorem 4.4.1) and is only an isomorphism of &,-rings,

supposing S has complex points.

4 Motivic filtrations and realizations

4.1 Motivic slice tower

To give a reasonable justification of what connectivity in S (S) means, one can try to define

the notion of effective spectra as in [Voe(2].

Definition 4.1.1

1. The full subcategory of S# (S) generated by spectra £¢, £p3 X, , n € Z under colimits, where
X € 8Smg a smooth scheme, is called the category of effective motivic spectra, denoted by
SFHH(S).

2. For any k € Z, the category of k-effective spectra 7 °(S)(k) is generated by

5 u‘i?((Pl)Ak/\X) ,n € L. (4.1.1)
+

where X € Smg a smooth scheme.

Remark 4.1.2

1. 8HE(S) is a stable co-category, since by definition it contains all colimits and the desus-
pension Q ~ X5 of any object.

2. The category of effective spectra does not contain any P!-desuspension of 29 X ,, this can
be rephrased into certain connectivity with respect to G,,, as we have P! ~ S A G,,.

3. We have a natural tower of full embeddings:

SHE(S) (k4 1) € SHEE(S) (k) ¢ SHHES)(k—1) C ... (4.1.2)

Definition 4.1.3 On S *(S) we define the effective homotopy t-structure as follows:
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SH(S) = SHE(S) N EFH(S),
(4.1.3)
SHH(S) o = 8HE(S) N 8FH(S)

where (8H(S)sq, 8H (S)) is the homotopy t-structure defined in Definition 3.3.6.

Proposition 4.1.4 The inclusion functor vy, : SHE(S) (k) — SFH(S) admits a right adjoint r,, :
SH(S) — SH(S) (k).

Proof. This is again an example of adjoint functor theorem Theorem 6.5.8. It suffices to check
SFHE(S) (k) is presentable and ¢, preserves colimits.

By definition, S#°(S)(k) is generated under colimits by a small set of objects £2k+m k¥ X X .
Now it’s clear that X, is compact in P(Smg) and the inclusion 7((S), — P(Smg)_ preserves
filtered colimits. By construction Q> preserves filtered colimits and ¢, preserves colimits
since SH°(9) (k) is closed under all small colimits. We can conclude using Lemma 6.5.6 and
Theorem 6.5.7. (]
For a motivic spectrum E, we set E* := 1, (r,(E)), called the k-effective cover of E. We then

have a filtration

w. = EFY 5 BF 5 BREL (4.1.4)

Definition 4.1.5 The filtration (4.1.4) is called the slice filtration of motivic spectra. The graded

piece is called the slice.

This filtration is exhaustive: to see this, notice ¢, o 7, preserves colimits and for every effective
spectrum X33 X, there exists a k € Z such that £33 X, € SHE(S)(k). Since ¢,y © L, 7y = L4T,
for n < k, we conclude that

Mapgﬂ(s) (E]?S X+, Lk.’l'k.COhmnEn) =~ Mapgﬂeff(s)(k) (213’01 X+, Tk(E))
(4.1.5)
=~ Mapsy(s) (Z5i X, E).
This filtration is not always complete. This will be related to the convergence of slice spectral

sequences later in §5.1.

Remark 4.1.6 The primary aim of Voevodsky to introduce slice filtration on spectra is to relate
motivic cohomology with algebraic K-theory by a spectral sequence (see [[Voe02], Conjecture
7, §7]), which mimics the spectral sequence of singular cohomology that converges to topolog-
ical K-theory of a space. This was established over a Dedekind domain in [Lev08] and over

arbitrary regular base scheme in [BEM25].

Voevodsky’s notion of slices is not compatible with the homotopy ¢-structures on $#(.S) and

SJ. For example, suppose we want our realization functor (defined in §4.3) to be t-exact, one
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has to make sure that the desuspension functor ¥~ or =™ changes connectedness in both
SH and SH (S), however, this is not the case in the latter one.

Instead, we consider a notion of very effective spectra as introduced in [SOD12].

Definition 4.1.7
1. The full subcategory in SF (S) generated under colimits by spectra Xg X35 X, ,n > 0 is
called the category of very effective spectra, denoted by SH ().
2. For any k € Z, the category of k-very effective spectra is generated by
535 (P AX) im0 (4.1.6)
+

where X € Smg a smooth scheme.

Example 4.1.8 [[BH21], Lemma 13.1] Let X be a smooth scheme and ¢ be a bundle of rank n
over X. Let £33 Th(&) be the Thom spectrum of ¢ as constructed in §3.5, then X33 Th(§) is n-

very effective. In particular, MGL is very effective.
The follow proposition justifies the relation between effective and very effective spectra.

Proposition 4.1.9 [[Bac17], Proposition 4]
1. We have SFH ¥ (S) = SFHH(S),.
2. The functor v : SH(S) — SHE(S) is t-exact.

Remark 4.1.10

1. Unlike the category of effective spectra, the subcategory of very effective spectra is not stable
as a truncation with respect to the ¢-structure.

2. This subcategory is presentable by Proposition 6.5.11. And by Proposition 6.2.23, the effec-
tive homotopy t-structure is the uniquely accessible t-structure on S *%(S) determined by

the collection of objects 337 X, where X € Smyg.

By the same argument in Proposition 4.1.4, for the inclusion 7, : SH % (8)(k) — SH(S) we
have arightadjoint 7, : $#(S) — SFV%(S)(k), and this induces a tower of very effective cover

of spectra:

e EML =0 7 E = BF 5 BFL (4.1.7)

Definition 4.1.11 The filtration (4.1.7) is called the generalized slice filtration of motivic spectra.

The graded piece is called the generalized slice.
We collect some interesting (generalized) slices of motivic spectra in the following example.

Examples 4.1.12
1. [[Voe04], Theorem 6.6] If S is essentially smooth over a field, then gr’Sy ~ M.
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2. [[Lev08], Theorem 9.0.3] If S is the spectrum of a Dedekind domain, then gr’S% ~ M. An
argument for any qcqs scheme can be found in [BEM25].

3. [[Lev08], Theorem 6.4.2, Theorem 9.0.3] The slices of KGL* over a perfect field are all
isomorphic to the zero slice of S;. Again the case for qcqs schemes is treated in [BEM25].

4. [[Bac17], Theorem 16] The generalized slices of KO* are given by

grOKO* n = 0(mod 4)
M; /2 n=1(mod4)

grmKO* ~ £7, A 4.1.8
UM,  n=2(mod4) (4.1.8)
0 n = 3(mod 4)
where grOI%* fits into two decompositions
My / 2[1] — gr°KO* — 1,
(4.1.9)

G,, N MYV — gr'KO* — M,
here M, = 7,7, KMV is the generalized motivic cohomology and M} is the Witt-motivic

cohomology. This result matches the topological nature of KO, i.e. the Bott periodicity.

4.2 Hopkins-Morel isomorphism
We are now going to determine the zeroth slice of algebraic cobordism. This is an ingredient
in our proof of main theorem and has fundamental importance on transferring the theory of
chromatic homotopy theory into algebraic setting.
In this section we fix k a field of exponential characteristic e, that is, if char £ = 0, then e =
1 else e = char k. Unless otherwise stated, the connectedness of a spectrum always means
connectivity with respect to homotopy ¢-structure of §7¢ (k) in Definition 3.3.6.
For any oriented ring spectrum E € §# (k), we have

E**BGL, = E**[[cy, ..., ¢, ]] (4.2.1)
where ¢; is the i-th Chern class of the tautological bundle. Just like in topology, this
isomorphism comes from the calculation of E**(Gr, (A*")) and a limit argument [[NS@09],
Proposition 6.2 (i)]. For 3,, € E, ,BGL, the element dual to ¢}, an easy calculation shows that

E,.BGL=E, [8;,B,, . (4.2.2)
Since the restriction E**BGL — E**P kills all higher Chern classes, we know §,,’s span
E, P>
Now under the Thom isomorphism [[NS@09], Proposition 6.2 (iii)]

E*P>® =~ F**%~2"ITMGL, (4.2.3)
we have dual elements b,, € E,,, ,, "2 'MGL, and the isomorphism

E, ,MGL ~ E, ,BGL ~ E, , [b,, b, .]. (4.2.4)
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If we take E = My, from this isomorphism we get a map
MGL/(by, by, ...) = M. (4.2.5)
Now we can formulate the Hopkins-Morel-Hoyois isomorphism [[Hoy15], Theorem 7.12].

Theorem 4.2.1 (Hopkins-Morel-Hoyois) Let k be a field of exponential characteristic e and MGL €

STF (k) the algebraic cobordism spectrum. The canonical map
f:MGL/(by,by,...)[1/e] = My[1/e€] (4.2.6)

is an equivalence.

Remark 4.2.2 Theorem 4.2.1 is an direct analogue of Quillen’s theorem, saying
MU/(by, by, ...) =~ HZ. (4.2.7)
Put L := Z[by, by, ...] the Lazard ring, the theorem above can be rephrased as
L[1/e] =2 MGLs, , (k)[1/e] (4.2.8)

classifying all formal group laws [[Hoy15], Proposition 8.2].
We write A for MGL/(b,, by, ...) for simplicity.
Lemma 4.2.3 M, A f: M, AN A[l/e] — M, N My[1/€] is an equivalence.

Sketch of proof. Asnoted in [Hoy15], it is reduced to check Hy A fand Hy, ; A f are equivalences.
Indeed, set F := fib(f), we need to show M, A F = 0. As SH (k) is a presentable oo-category,

we check on compact object X € $7((k) that [X, My A F], " = 0. It suffices to check
(X, M; ANF1®,Q=0
(X, M, ANF|®,Z/ =0 (4.2.9)
Torl ([X, My, A F),Z/1) = 0.

As is shown in [[Hoy15], Proposition 4.13], the motivic Eilenberg-MacLane construction H :
Sp(Fun(A°P, Ab)) — SH(S), where Sp(Fun(A°P, Ab)) is the category of spectrum objects in

simplicial abelian groups, is colimit preserving, as X compact, we have
[X, M, ANFl®;, Q= [X,Hy AF| =0 (4.2.10)
by assumption, and
My -5 My — Hy), (4.2.11)

induces a long exact sequence

1
SYOX, Hyy AF| —— [X, My AF] — [X, My A F] — [X,Hy; A F]

N/ N/

Tor! ([X, My A F),Z]1) (X, M, NF|®,Z]
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which proves the statement. The rational acyclicity follows from [[NS@09], Corollary 10.3],
while the torsion case is a consequence of calculation using the motivic Steenrod algebra

[[Hoy15], Theorem 5.17 & 6.19]. O

We need a fact from localization:

Lemma 4.2.4 For any My-acyclic spectrum E € SH (k) and MGL-localized connective spectrum X €
(‘9.7‘[(](5) we htwe [E?X]Sj{(k) = 0

Proof. This follows from the general theory of Bousfield localization [[Lurl0], Lecture 20] and
[[Man18], 85.1, §5.2], as we identify M- and MGL-localization both with n-completion defined
later in Definition 5.1.4. O
Proof of Theorem 4.2.1. We show F' := fib(A[1/e] — My[1/e]) = 0.By Lemma 4.2.3 F is M-acyclic
and as A is a connective MGL-module (since 87 (k). is closed under colimit and MGL is

connective), by Lemma 4.2.4 we have
[F,A[1/e]] = 0. (4.2.12)
Similarly as M is a weak MGL-module by the orientation v : MGL — M, and My, is connective
by [[Hoy15], Lemma 7.3], we know
[F, 5100, [1/¢]] = 0. (4.2.13)
Now use the fiber sequence
SLOM,[1/e] = F — A[l/e] — My[1/e] (4.2.14)
and by (4.2.12) we have a section F — 7 1%M,[1/e] which is 0 by (4.2.13), therefore F = 0.
O

We also prove some consequences of this theorem.

Corollary 4.2.5 [[ Voe02], Conjecture 5] Let S be an essentially smooth scheme over a base field k. The
slices of MGL* in S (S) are given by

gr'MGL* ~ 224 H L, [1/e] (4.2.15)
where L, is the t-th graded piece of L viewed as an Adams graded MU -module. In particular, for k a
field of characteristic 0, the zeroth slice of MGL is My,

Proof. For any essentially smooth morphism f : S — Spec k of schemes we have gr’ f* ~ f*gr
by essential smooth base change [[Hoy15], Lemma A.7]. Therefore, we may assume k is perfect.

In this case, the statement follows from Theorem 4.2.1 and [[Spil10], Corollary 4.9].

U
In fact, this is true for any Landweber exact theory. Recall a graded L[1/e]-module M, is called
Landweber exact, if for every p prime, a regular sequence v(()p ), vgp ), v;p )|... where v{P) has degree

2(p™ — 1) in L[1/€], is again regular in M,. By [[NS@09], Theorem 8.7], there is a spectrum E €
SH (k) representing the functor
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8 (k) — GrAb

(4.2.16)
X MGL**(X) ®L[l/e] M*

Theorem 4.2.6 [[Spi12], Theorem 6.1] Let M, be a Landweber exact L[1/e]-module and E the associated

spectrum in ST (k). There is a unique equivalence of My-modules:
gr(E*) ~ X2 Hy, (4.2.17)

making the diagram

(%

o

7r2t,tE P Mot (grt(E*»
commute. Here H, is the motivic Eilenberg-MacLane spectrum associated to the group M,.

(¢
m

As amotivic spectrum constructed in Definition 3.4.14, BP ())t is the direct summand of MGL,,
killing all ¢-typical formal group laws. A direct consequence of Theorem 4.2.1 shows that it
takes the form MGL,) /z where z € L is a regular sequence generating the vanishing ideal of

all /-typical formal group laws [[Hoy15], Example 8.13]. We have the following corollary:

Corollary 4.2.7 BP\Y), is a Landweber exact theory and we have

mot
gr'BPY) ~ H(L(@[l/e])O ~ My[1/e] @ Zy. (4.2.18)
Another beautiful consequence is regarding the general slice filtration of a Landweber exact

spectrum.

Theorem 4.2.8 [[Heal9], Proposition 4.11] For any Landweber exact spectrum E € SH (k), the slice

filtration and generalized slice filtration of E agree.

Proof. We prove the theorem for MGL, the rest is a comparison of homotopy groups via base
change. We want to show MGL" € 8#{(k)(n). By Theorem 4.2.1 and [[Spi10], Theorem 4.7],
we can express MGL™ as the colimit of a diagram of MGL[1/e]-modules like X2™™MGL[1/e]
for m > n. By Theorem 3.3.2 and construction, MGL is a very effective spectrum, hence
»2mmMGL[1/e] € SFH VU (k)(m) by definition. Finally since SH Y (k)(m) C SHE(k)(n) is

closed under colimits we conclude. [l

4.3 Realization functor

Realization functors are colimit preserving exact functors that send motivic spectra into a
simpler stable co-categories, e.g. SH . We will introduce three kinds of realization functors: the
complex Betti realization, the real Betti realization and the étale realization functor. We begin

with the first two cases.
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Let k be a field of characteristic zero equipped with an embedding k < C. To construct the
complex realization functor, we lift the functor (—)(C) : Sm;, — An, which associates a smooth
scheme S with the homotopy type of the space of its complex points S(C) under the analytic
topology, to a colimit preserving functor Re¢ : P(Sm;) — An by the universal property of
presheaves Theorem 6.5.3.

Now we put an eye on the compactability of (—)(C) with Nisnevich excision. Since étale
morphism induces a locally split map over analytic topology, we have precisely the following

proposition:

Proposition 4.3.1 [[ Voe10], Lemma 3.38] Let {U 4 X,V 5 X} be a Nisnevich square as defined in

Definition 3.1.2, then X(C) ~ U(C) V(C) is a homotopy equivalence.

H(U>< )(©)

Since (—)(C) preserves products, we have
(S x A})(C) =~ S(C) x AL(C) ~ S(C) x C =~ S(C) (4.3.1)

and together with the previous proposition, we conclude that Re¢ : P(Sm;,) — An factors

through 7 (k) of motivic spaces. The same construction works for pointed spaces # (k),.

The final step is to post-compose the stabilization functor and check whether ¥* o Re :

H(k), — 8H is symmetric monoidal and inverts P!. To see why this suffices, notice that by

construction 8K (k) is the universal symmetric monoidal co-category that is P!-stable as in

Proposition 3.2.11. Therefore, such a functor must factor through $7 (k).

Proposition 4.3.2 The functor £°° o Re¢ : H (k), — SH is symmetric monoidal and £°>° (Reg(P1))

is a @-invertible spectrum.

Proof. By Proposition 6.4.6, we need to verify that Re; preserves finite products. As a right
adjoint, localization preserves products, and since every presheaf is a colimit of representable
objects, we see this is true as Reg is colimit preserving and (—)(C) preserves products.

We compute
R,e(c(P1> =~ Re(c<Sl) N Rec(Gm) =~ Sl NC* o~ 82 (432)
where we view S! as X( [] *) and use that Re¢ is colimit preserving. Since S? is indeed

invertible in S# we conclude. O

Corollary 4.3.3 The functor ¥>° o Re¢ : H (k), — SJ factors through SJ (k) and induces a functor
Rec : 8H (k) — 8, which is well-defined, symmetric monoidal, preserves colimits and finite prod-

ucts. We call this functor complex Betti realization.

Remark 4.3.4 Notice Re preserves the &, -ring structure on $# (k) and SH for 1 < n < oo, this

is a direct consequence of the fact that Re is lax symmetric monoidal.
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We want to understand the Z/2-action on C-points of a scheme. We claim it suffices to
consider only R-schemes. Indeed, if k¥ embeds into R, then the embedding « : k¥ < R induces
a base change functor Sm; — Smy, which in turns gives us a bijection Sm(Spec(R), S) =~
Smpg(Spec(R), S x, Spec(R)) for each S € Sm,.

The set C-points of a R-scheme naturally carries a Z/2-action by complex conjugation, hence
similarly, the functor (—)(C) pre-composing with base change induces a functor Rey : # (k) —
T((DZ /2), where 0z, is the orbit category of Z/2.

Corollary 4.3.5 The functor £°° o Reg : H (k), — SH ¢, where SH ¢, is the category of genuine G,
-spectra, factors through SH (k) and induces a functor Reg : SH (k) — SI ¢, which is well-defined,

symmetric monoidal, preserves colimits and finite products. We call this functor real Betti realization.

The following proposition explains the motivation of defining very effective spectra and the ¢

-exactness of the realization functor.

Proposition 4.3.6 The restriction of Re¢ : SH (k) (m) — SH w4, is well-defined, where SH +.,,,

is the subcategory of 2m-connected spectra.

Proof. For any X, € H (k),, we have Rec (255X, ) >~ X*Re¢ (X, ) by definition, clearly this is

connected. Now for each (P1)"™ A £33 X,
Rec ((P1)"™ ABIX, ) ~ S A S°Re (X, ) (4.3.3)

is 2m-connected since Reg is symmetric monoidal. The statement now follows from the fact

that connected spectra are closed under colimits. 0

Remark 4.3.7 The proof works similarly for real realization functor which takes value in m-

connected genuine C,-spectra.

Until the end of this section we fix an algebraically closed field k of characteristic p.

The situation in étale case is a bit tricky, as the étale homotopy type taken in p-local coefficients
is not A'-invariant in general, and the étale homotopy type functor due to Artin-Mazur-Fried-
lander is also not product-preserving.

We therefore work away from the characteristic and give an co-categorical definition of the
étale realization following [Hoy18].

Let An" be the category of profinite spaces, it is naturally identified with pro-objects of
presheaves of Fin finite sets via the limit functor. For any shape S € Pro(An), we can associate
a profinite completion S* € An” to it. Our target of étale realization functor will be the S-
stabilization of An}, viewing S? as a constant sheaf, to which we denote SH nS?

Now for any scheme X, let Et y be the étale site over X and Xy, := Shvy, (Et X) be the oo-topos

of étale sheaves on X, let X} be its hypercompletion. As the geometric morphism X, — X,
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to Zariski sheaves induces an equivalence on (—1)-truncated objects, we see if X is locally

Noetherian, then X, is locally connected and we may apply the following theorem:

Proposition 4.3.8 [[[Hoy18], Corollary 5.6] Let X be a scheme such that X is locally connected,
then the étale topological type of X corepresents the fundamental pro-oco-groupoid 11, X/} as defined in
Definition 6.7.3.

As the fundamental pro-co-groupoid is a shape, we have a functor Reg : Shvy (Smg) —
Pro(An) and by composing with completion and stabilization, a functor Re, : Shvy (Smg) —
SHNE,

Since étale topology is finer than Nisnevich topology, every étale sheaf is a Nisnevich sheaf,
and we have the realization functor Reg, : Shvy, (Smg) — SHMS’.

To get an A!-invariant functor, we have to pick a prime ¢ # char(k) of the base field and localize
Pro(An) with respect to all pro-morphisms that induce isomorphisms on objectwise continuous
cohomology with Z/¢-coefficients. This is a reasonable localization as suggested by [[Isa04],
Theorem 2.5]. We denote it as Pro(An),.

Luckily, away from characteristic the étale cohomology is Al-invariant as [[Sta25], Tag 03SB],
and by [[Fri82], Proposition 5.9] the realization functor extends to #(S) — Pro(An), —
SHNE,

Proposition 4.3.9 We have Rey, (B} ) = £>°S?.

Proof. This follows from the facts 7¢'(P}) = 0 and (notice Br(k) = 0):
Z)Cif =0, 2

4.3.4
0 else ( )

Hg (]PkISZ/e) = {
with a chosen isomorphism p, — Z/¢. O

Corollary 4.3.10 The functor Rey, : ST (k) — SFH"S is a well-defined exact functor. We call this

functor étale realization.

Remark 4.3.11 Many classical topological spectra can be completed to pro-S*-spectra via
completion, for example, MU - MU. These profinite spectra represents cohomology theories:
Let X € Smg and E € SHMS’, then the n-th E-étale cohomology is

E4(X) = [Reg (X), 5" E], (4.35)

FONS2C
In particular, the étale cohomology theory representing MU is called étale cobordism as defined
in [[Qui07], §4.2.3].

4.4 Realizations and slices

We collect some realizations of motivic spectra and their slices.
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Theorem 4.4.1 Let MU denote the complex cobordism spectrum in SF. Then there is an isomorphism

of &, rings: RecMGL =~ MU, where MU is equipped with the & structure as a Thom spectrum.

Proof. In order to show that the realization of the motivic Thom spectrum is equivalent to
the topological Thom spectrum as an &, -ring, it suffices to show that they induce the same
symmetric monoidal structure on MU.

We observe the construction in Theorem 3.5.3 can be extended to any colimit preserving functor
F : Span — Catf as pointed out in [[Ban25], §2.4.2]. Fix a cardinal x. We set F' to be the functor
sending X € Sm;, to SH (An / Reg( X))n, i.e. the spectra over Reg(X) that are closed under «-
small colimits. By a slight modification of [[Ban25], Proposition 2.36] (replacing R with C), this
gives us a symmetric monoidal functor

Mg : Py(Smy), . — F(C) ~ 8% (4.4.1)

/ B
and a natural transformation « : S — F such that

(6
i
fpz(fgmk)/sﬂg > Rs(Smy)

Gc

SH (k) ————— 8K

/ P

commutes. For any X € Sm;, ax sends the structure map X — Spec k to the complex Betti
realization Rec(X29X, ) — S and this map is symmetric monoidal. Since complex Betti real-
ization factors through A'-invariant Zariski sheaf and commutes with the A'-localization as by

[[Ayo10], Theoreme 4.9], the following diagram

Re(c

. /\

~ ? LAIShVZaI‘((Smk)

B (Smy,)

, l M l
ac =~ Re(c

SH (k) —————— SH

Jpe T Ay

is a commutative diagram of symmetric monoidal functors, where Sp is the stabilization func-
tor (in order to distinguish with our notation of P!-stabilization 8#) and M’ is our candidate
of topological Thom spectrum functor. But the argument in [[Ban25], Lemma 2.45] applies and
we can identity M’ with M the topological Thom spectrum functor.

From Reg o M, = M o Re o , this reduces to job to check whether motivic j-homomorphism
composing with « is the topological Thom spectrum functor. Recall MU is identified with

M(BU R 8%2) and MGL = M,, (K" 4 5}[2), so we reduce to check Req(K°) ~ BU. To see

this, one compute
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Rec(K°) ~ Rec(BGL) = Reg(colimpe (GL — GL x GL — ...))

~ B (Rec(GL)) =B (U GLn((C)) ~B(|JU,(C)) =BU (4.4.2)

where 1 is true since Re¢ preserves colimit and 2 comes from the deformation retract U, (C) <

GL, (C). O

Corollary 4.4.2 Let k be a field of characteristic 0 equipped with an embedding k < C. Let MU* be
the Postnikov filtration on MU and MGL* the slice filtration on MGL € S7( (k), then Rec(MGL™) is

(2n — 1)-connected, and we have an isomorphism in ST :

ToonRec(MGL™) 2 MU2" (4.4.3)

Proof. By Theorem 4.2.8 and Proposition 4.3.6, it is enough to verify that MGL is (—1)-connected,
which follows from Theorem 3.3.2 and construction.
For the second assertion, we truncate the slice filtration to 2n-level and consider the two strong

convergent spectral sequences associated to

... > MGL™t! - MGL™ — ... - MGL

(4.4.4)
.. > MGL™" —» MGL™ — ... - MGL?".
Together with Theorem 4.4.1 this shows that
7, (MU) = 7, (Rec(MGL)) = 7, (Rec (MGL™)) (4.4.5)
for m > 2n. Therefore Re:(MGL") is a (2n — 1)-connected cover of MU, hence the statement is
true. L]
()

Since Re¢ preserves colimit and finite products, and BP,;, is a direct summand of MGL,, by

mot

Theorem 4.4.1 we have:

Corollary 4.4.3 For ¢ a prime we have ReCBP“) BPY, where BPY € SH is the classical Brown-

o~
mot

Peterson spectrum.

Theorem 4.4.4 [[Ban25], Theorem 2.48] Let k be a field of characteristic 0 equipped with an embedding
k < R. Let MO denote the oriented cobordism spectrum in SH ¢, . Then there is an isomorphism of &,
rings: Regk MGL =~ MO.

Proof. Replace the complex realization functor in the proof of Theorem 4.4.1 with real realization
functor, we deduce that the real realization of motivic Thom spectrum functor agrees with the
topological Thom spectrum functor as explained in [[Ban25], Theorem 2.47]. Hence it suffices
to check Regx(BGL) =~ BO. But as O, (R) < GL,,(R) is a deformation retract, this is obvious.

O

In general the interaction between slices and Betti realization functor could be very compli-

cated, the next two theorems are about the realization of slices of the motivic sphere spectrum.
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Theorem 4.4.5 [[L.ev14], Lemma 6.4] Let k be a field of characteristic 0 equipped with an embedding
k < C. Suppose k has finite cohomological dimension, then for all n and q, the complex Betti realization

induces an isomorphism

Rec,, : my,0(grS3) (k) — , (Rec (gr?S})) (4.46)

Corollary 4.4.6 Let k be an algebraically closed field of characteristic 0. Fix an embedding o : k < C,
then 7, o(Sy) (k) = 7,,(S) for all n.

Proof. This is a standard spectral sequence argument. Notice Re is symmetric monoidal and

Rec(S;) =~ S. By Theorem 5.1.8 there is a convergent spectral sequence
1,0 (819SE) (k) = 75,0(Sg) (k) (4.4.7)
and the slice induces a spectral sequence
7, (Rec(gr?Sy)) = m,, (Rec(Sy)) = 7, (S). (4.4.8)
Invoke Theorem 4.4.5 and we have the desired result. a

The next example shows that the complex and real Betti realization can be very different.

Theorem 4.4.7 Let k be a field of characteristic 0 equipped with an embedding k < R, then:

1. RecKGL =2 KU, the spectrum representing complex topological K-theory.
2. RegKGL = 0.

Proof. By Proposition 4.3.1 the realization functors satisfy Nisnevich descents, hence Definition
3.4.6 tells us Reg (L, (Z x BGL)) =~ Rec(Z x BGL) ~ Z x BU by the same computation in
Theorem 4.4.1.

Now as Reg(P!) ~ S?, the structure map after realization is S? x Rec(E,,) — Rec(E

n

11) for
a motivic spectrum E = (E,, E, ...). Since Rez commutes with colimits, in particular, it com-
mutes with the spectrification functor SHP*® — SH, we see that the complex realization of
KGL should be the S?-spectrification of

(Z x BU,Z x BU,...) (4.4.9)
which is also the S?-spectrification of KU = (Z x BU,U,Z x BU, U, ...) by complex Bott peri-
odicity.

Similarly, Reg (KGL) should be the S*-spectrification of
(Reg(Z x BGL), Regx(Z x BGL), ...) (4.4.10)
of which we have calculated in Theorem 4.4.4:
Reg(Z x BGL) ~ Z x BO. (4.4.11)
However, the real Bott periodicity tells us that 7, (Z x BO) is the 8-periodic sequence
Z,Z ] 2,Z ] 2,0,Z,0,0,0, so the spectrification must be 0. O
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5 Application: Spectral sequences

5.1 Motivic Atiyah-Hirzebruch spectral sequence

As we have already seen in §2.3, each filtration induces a slice spectral sequence. We thus give

the following definition.

Definition5.1.1Let E € SH (S) and E* the slice filtration on E. Then Construction 2.3.10 yields
a spectral sequence related to E*, we call this the motivic slice spectral sequence associated
to E*.

Remark 5.1.2 We are primarily interested in the global section of this slice spectral sequence.

This is also what Levine is referring to as motivic Atiyah-Hirzebruch spectral sequence:

EY'(AH)(E) i= 7,4 o(8r"E")(Spec k) = m,,, o(E)(Spec k) (5.1.1)

We have also the ¢-local and ¢-complete version of this spectral sequence whenever £ is a prime

different from the characteristic of k.

Definition 5.1.3 Let E € $7((S) and £ a prime number. We have the ¢-localization E ;) and ¢-
completion E; with slice filtrations E,, and (E;)" respectively. We call the from Ef; and (E} )
induced spectral sequences ¢-local and /-complete motivic slice spectral sequences associated
to E.

The convergence of the motivic slice spectral sequence was conjectured in [Voe(2]. In order to
formulate the best convergence result established so far, we introduce some concepts regarding
the completion of motivic spectra.

Let E € SH(S) be a spectrum and let E* be the associated slice filtration. We define an

endofunctor
sc: 8H(S) — SH(S), E cofib(lim E" - E) (5.1.2)
and call this functor the slice completion of E*. Clearly the slice filtration is complete if and

only if sc(E) =~ 0.

Definition 5.1.4
1. The algebraic Hopf map is the class n € 7, ; (Sg) induced by the coordinate map

A% — {0} = P, (m,y) b [o 1 4], (5.1.3)
2. The limit of the sequential tower

... = E A cofib(n™™) — E A cofib(n™) — E A cofib(n™™!) — ... (5.1.4)

is called the n-completion E}} of E.
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We denote SH!/(S) to be the smallest subcategory of K (S) which contains Sg and is closed
under small colimits. We call this the category of cellular motivic spectra over S. The slice

completion is closely related to the n-completion of a cellular spectrum.

Proposition 5.1.5 [[Man18]. §5.3] Let E € S (S) be a cellular spectrum of finite type. Let Eyqy, and
Ey,, be the MGL- and My-localization of E respectively. Then

sc(E) =~ B =~ Eyigr, ~ By, . (5.1.5)

The next theorem establishes the convergence of the slice spectral sequence over certain fields.

Theorem 5.1.6 [[ BEX24], Corollary 5.10] Let k be a field of exponential characteristic e and t > 0
coprime to e such that ved, (k) < oo. Suppose E € 8H (k). for some ¢ € Z.
1. The map (E{:p)* — sc (Et/\’p) is an isomorphism on =, .

2. There is a conditionally convergent spectral sequence
o (119 (L)) = 7 (BL) 5.1.6)

where p is the endofunctor of smashing with G,,.

Remark 5.1.7 Suppose cd, (k) < oo, then p™ = 0 for some m, hence, then p-completion of E is

easy to compute. In fact in this case, for z € X € Sm;, we have

for some M > 0 and the spectral sequence degenerates.

On taking the global section, the motivic Atiyah-Hirzebruch spectral sequence always con-

verges for k a perfect field:

Theorem 5.1.8 [[L.ev13], Theorem 7.3] Let k a perfect field of exponential characteristic e with finite

cohomological dimension. Let £ be coprime to e. Then we have a strongly convergent spectral sequence

Ty (819(EL)") (k) = mp 1 (B7) (k). (5.1.8)

However, as we will see in the next section, the convergence of the Atiyah-Hirzebruch spectral
sequence associated to S, (and MGL) can also be shown by relating it to the convergence of

classical Adams-Novikov spectral sequences.

5.2 Comparison theorem

Let k be an algebraically closed field of characteristic zero. Fix an embedding o : k¥ < C and let
Rec : SH (k) — SH be the associated complex Betti realization functor.
The goal of this section is to reprove the main result of [Lev15], which, adapted to our notations,

has the following formulation:
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Theorem 5.2.1 Consider the Adams-Novikov spectral sequence
Ey*(AN) = Exty; o) (MU, MU,) = m,_S (5.2.1)
and the motivic Atiyah-Hirzebruch spectral sequence
EYU(AH) =7 4 0(gr79S}) (k) = m_ppg,0(Sk) (K). (5.2.2)
Then there is an isomorphism
AP EPY(AH) = EPTP?P(AN) (5.2.3)
which induces a sequence of isomorphisms of complexes for r > 1

3p+q,2
Bpg 107 : (@) ELUAH),d,) = (&, BT (AN), dy, ). (5.2.4)

To establish the isomorphism at E,-page, one proves the following key lemma.

Lemma 5.2.2 The Betti realization functor gives an isomorphism
Re(grl@YS}) = grl2®2Y)Dec® (MU *1) (5.2.5)

where Dec is the décalage functor introduced in §2.3.

Proof. We first notice the Postnikov tower on MU can be applied termwise on cosimplicial
spectrum s — MU”**! and incudes a filtration on it. (note here this filtration is indeed complete
by Example 2.1.7).

Since Reg is an exact symmetric monoidal functor, it preserves cofiber sequences. By Theorem

4.4.1 and Corollary 4.4.2, we have an isomorphism
Reg (colim,  y Tot,grl®® MGL"**1) = colim,_ y Tot, 75,75, MU, (5.2.6)
We still need to calculate the left side to get rid of the colimit. We observe this follows from

the descendability of grl®?S; — grl®t) (t5), MGL"**!: Indeed, descendability implies an equiv-

alence
grl@?)§;, = Tot, grl®?) (1,) MGL/**! (5.2.7)
in 87((k) = Modg, . Now take N = oo and by definition of décalage functor, we have the

desired result. O

Therefore, we reduce to show:

Lemma 5.2.3 Let a < b < s+ 1, denote v}, : A= < A the inclusion of simplicial sets and (v) _its
right adjoint. Then grl®?)S;, — grl®?) (1) MGL"**! is & -descendable.

Proof. The unit map ¢S, — MGL"**! induces a map S; — holimp<.(,) MGLM™*! since

holim(¢,) Sy 2 S;. On the other hand, there is an equivalence

holimp <. (¢5) MGLM*! & Tot, (1) MGL ™+ (5.2.8)
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by definition. We now show grl®?)S = Tot grl?) (t5) MGL"**!, which, in light of Proposition
6.8.2, suffices to construct a retraction from Tot*gr(®:®) (Ls)*MGL/\*+1 to grl@?)S;.

We show cofib (gr[“’b)Sz — Tot,grl®?) (LS)*MGL/\*+1) = 0. For this, notice that by Theorem 4.2.1
gr’S; = gr®MGL* ~ M. Let MGL be the cofiber of S, — MGL, then it follows that MGL! =
MGL, thus (M—GJJASH)SJrl = MGL"**!, and we have

(R MGL )™ = Qe MGL . (5.2.9)
Hence fora <b<s+1
grl®?) (Q*MGL"+1)" = 0. (5.2.10)
The following fiber sequence is well known [[Lur17], §4.7.2]:
Q*MGL"**! — Tot MGLM*! — Tot, ; MGLM*! (5.2.11)
and after truncation to ((L)s)*MGLA*Jrl we have a cofiber sequence
Sk = Tot,_;((¢),) MGLM™*! — Tot((1),) MGLM**! — Q*MGL"**!, (5.2.12)
Then we conclude by taking the associated graded pieces. O

Proof of Theorem 5.3.1. Since a and b in Lemma 5.2.2 are arbitrary, we have an isomorphism of
the slice spectral sequences associated to two filtrations Re(S}) and Dec®(MU"**1), where all
the odd homotopy groups of MU”**! vanish.

On the other hand, the realization functor induces an isomorphism
0 (grl®?S;) (k) 2= 7, (Re(grl*?S})) (5.2.13)

by Theorem 4.4.5, whence the first spectral sequence is just E(AH) by definition. This, after a

change of E,-spectral sequence to E;-spectral sequence, yields
EP9(AH) = E20%P(Dec(MUMH)) = E2P97P (Dec(MUM)). (5.2.14)
Now by Theorem 2.3.12:
3PP (Dec(MU™)) = B3PI (MU™) = E3PIP(AN) (5.2.15)
where the last change of indices is from the Cartan-Eilenberg indexing convention to the one

of Bousfield-Kan, which is common for the Adams-Novikov spectral sequence. O

Corollary 5.2.4 Fix a prime £ and the associated Brown-Peterson spectrum BPY). Then there is an

isomorphism of the £-local Adams-Novikov spectral sequence

E;t(AN)Z = Ext]‘;i(e) (BPie), BP,(f)) =T S®Zy (5.2.16)

(BP®)
and the {-local motivic Atiyah-Hirzebruch spectral sequence

Ef’q(AH)Z = 7T—p—q,O(gr_qS;(c>(k) ® Z(Z) == Tr—p—q,O(Sk)(k) ® Z(Z) (5217>

induced by the complex Betti realization.
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Proof. As of Definition 3.4.14, BP\, is a direct summand of MGL, so it lies in SH°f(k).

mot

Moreover, by Theorem 4.2.1 and Corollary 4.2.7 we have
g1'S} ® Zy) =~ gr®MGL* ® Z ;) ~ gr’BPL, (5.2.18)

and therefore the argument in Lemma 5.2.3 can be applied and the unit map S} ® Z,) — BPY)

mot

induces a descent on grading pieces. Finally by Corollary 4.4.3 we have
Re (gr[avb) (S;® Z(@)*) o grl20:20) Dece ((BP“))A*H) (5.2.19)
and the rest is analogue. O

Remark 5.2.5 This isomorphism of spectral sequences has a conceptual interpretation: In
[Pst23] it was shown that

S8H I (C)) =~ Syn)) (5.2.20)

where Syn represents the category of synthetic spectra as constructed in [[Pst23], §4.1], which
is a way to encode the Adams-Novikov spectral sequence using a one-parameter deformation
of 8H. In [Ghe+22], another attempt of categorification of the Adams-Novikov spectral
sequence is to introduce I, 1-modules of filtered spectra: this shares the same spirit as décalage
introduced by Antieau later (see [[Ghe+22], Remark 3.7]). Nevertheless, the two constructions
turned out to be equivalent [[Pst25], Theorem 7.5]: they are both related to the concept of even
filtrations, which is a purely topological construction.

Since MGL is cellular, this equivalence reveals that over C, the behavior of MGL-modules
should be purely topological under some mild finiteness conditions. In fact, the étale case
suggests that more should be true over arbitrary algebraic closed fields, though we don’t know
how to precisely state that, since cellularity is not closed under infinite limits, in particular,

completions.

5.3 A spectral sequence of étale cobordism

We now turn our attention to the ¢-adic case. We fix an algebraically closed field of characteristic
p and a prime ¢ # p. In this section we may replace S, by S, [1/p] in order to use the Hopkins-
Morel theorem Theorem 4.2.1.

Unlike the characteristic zero case, the completed spectra does not always behave well under
realization since it is an infinite limit. However, the main theorem of [Elm+22] gives us a
possible approach.

Recall we have built our motivic spaces out of Nisnevich sheaves of smooth schemes. Since
étale site is finer that Nisnevich site, there is not obstruction to define an étale version of
stable motivic homotopy category, of which we denote 8# (S). This category turns out to
be a non-full localization of §# (S). The identity functor id : Smg — Smg induces a geometric

morphism of co-topoi
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g, : Shvi (Smg) — Shvy,(Smg) (5.3.1)
with a left adjoint e*. This adjunction descends to
e* 1 SH(S) & SH(S) ¢, (5.3.2)
By construction, there is a canonical isomorphism of motivic cohomology:
H%(Spec k; Z/n) =~ p,, (k). (5.3.3)
Now let ¢ be a primitive n-th roots of unity in k, and let §,, be the associated element of
H%'(Spec k; Z/n). As in [[Hoy15], 8.14], the spectral sequence
HPH20bat (| Z,/n) @ Ly[1/p] = MGLP(k)[1/p] (5.3.4)

sends 3, to an element in MGL®!(k; Z/n), which we call motivic Bott element. As explained
in [Elm+22], the element §,. actually lives in (MGL/2*)*™ (k) for some N, and the formal

inversion with respect to ;. is independent on the choice of the root of unity ¢.
Proposition 5.3.1 [[Elim+22], Theorem 6.26] For any v > 1 The unit of the adjunction (5.3.2) induces
an equivalence of spectra

MGL/£° ;'] = MGL® /¢v (5.3.5)

where MGL® := ¢,e*(MGL) the étale localization of algebraic cobordism.

Remark 5.3.2 In [Qui07] this étale localization of algebraic cobordism is identified with his étale

cobordism spectrum after étale realization. This explains the title of this section.
From this proposition and Theorem 5.1.8, an argument of slice spectral sequences yields:

Theorem 5.3.3 [[ Elm+22], Proposition 7.11, [ Qui07], Theorem 64] There is an isomorphism of graded

abelian groups induced by étale realization:

(@ MGLP9(k) ® Ze) (871 = 5 (MUp)"[B7Y] (5.3.6)

P

where (3 is the collection of By for all v > 1.

More generally, this isomorphism works for all Landweber exact theories as pointed out by

[[Elm+22], Proposition 7.12]. This allows us to prove the following theorem:
Theorem 5.3.4 Replace all spectra with Bott inverted version. Let MU} be the {-adic completion of
complex cobordism spectrum. The Adams-Novikov spectral sequence

s,t
Ey(AN)y = EXtMU@,*(MUQ) (MU?,MMUZ\,*) = (m,9),

. (5.3.7)

converges and is isomorphic to the £-complete Atiyah-Hirzebruch spectral sequence
Eft(AH)? =7_o 40(gr " SE1/p]) (k) ® Zy = 7 o(Sk[1/p]) (k) ® Z, (5.3.8)

with isomorphisms induced by the étale realization functor. In other words, there is an isomorphism
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(Moseo(Sl1/pD(R))) [671] = (m,1.S); [67] (5.3.9)

Proof. By Theorem 5.1.8 the second spectral sequence is convergent, hence it suffices to show
the isomorphism as stated.
The argument in Lemma 5.2.3 for

gives us the descent object. By Theorem 5.3.3, an isomorphism
7. (g Sil1/p) (B) [ @ Z, = m, (gr**Dec ((MUR) ) ) [57]. (5.3.11)

The two filtrations agree globally after inverting Bott element, even though we can’t say

anything else over arbitrary section! Now the usual décalage trick can be applied. O

Remark 5.3.5 After finishing this thesis, we notice that our result has a partial overlapping with
the main result in [[BBX25], Theorem 8.3], where they compared the motivic stable stem over
any field with the one over C. Concretely they proved the following isomorphism of derived

complete modules of KM (C)j -

7 (S8,) (0) = KMV (), & m,..(S1,) (©) (53.12)

where they only assumed & to be Tate-orientable, i.e. contains p,. for all n.

6 Appendix: Higher category theory

We will collect and quickly go through most category theoretical languages used in this thesis,

especially the co-category, which might not be familiar to some readers.

6.1 Definition of (oo, 1)-category
There’re many approaches to introduce higher and oo-categories, perhaps the best one with a

balance of combinatorial background and transparency is the theory of quasicategories (resp.

weak Kan complexes).

Definition 6.1.1 The simplex category A is the category of non-empty finite totally ordered sets
and order-preserving maps between them. Typically every object in A is isomorphic to [n] =

{0 <1 <2< ... <n} for some n and isomorphisms are unique if exists.
Definition 6.1.2 Let C be a category, a simplicial object in € is a functor A°®® — €. Similarly a

cosimplicial object is a functor A — €. In particular, a simplicial set is a functor A°®® — Set. The

functor category of all simplicial objects in € is denoted by C,.
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Definition 6.1.3 The i-th face map d, : [n — 1] — [n] is the unique morphism whose image
doesn’t contain i, and the i-th degeneracy maps s, : [n + 1] — [n] is the unique morphism

whose image hits ¢ twice.

Remark 6.1.4 It’s easy to see every morphism in A can be written in a composition of face maps
and degeneracy maps. In light of this observation, we may identify a simplicial object S in €
as following data:

1. for each n > 0 an object S,, and

2. for each i the (pullback) d, : S,,_; — S,, (of) face maps and s, : S

n

+1 — S, of degeneracy

maps.

Definition 6.1.5 For every natural number n, the n-simplex A™ is defined to be the simplicial
set represented by the object [n] as with the Yoneda lemma. For each n-complex where n > 1
and let 0 < k < n, we define the k-th horn of A™ to be the simplicial set A} C A™ as the union
of all faces except k-th in A™.

Remark 6.1.6 For every topological space X, we may associate the singular simplicial complex
Sing(X) to it as in algebraic topology. This defines a functor Top — Set, and it admits a left
adjoint, which assigns a geometric realization |S| to each simplicial set .S, which is left Kan

extended from the functor [n] > A”.

The ability to extend maps out of horns to maps out of simplices is a criterion for homotopy

coherence.

Definition 6.1.7 Let K be a simplicial set, we say:

1. K is aKan complex if foreachn > 1 and 0 < k < n, every morphism of simplicial sets A} —
K can be extended to a morphism A™ — X.

2. K is a quasicategory if the above condition holds just for 0 < k < n.

Example 6.1.8

1. The singular complex Sing(X) of a topological space is a Kan complex X.

2. Let € be a small 1-category, the nerve of € is defined as the following simplicial set: for each
n > 0, N(C),, is the set of functors [n] — €, i.e. the chain

f1 fo fn
C,—C —C—..—C, (6.1.1)

the pull back of j-th face map sends this to

f1 Firof; In
C—C —.Cy——Cy — ... —C, (6.1.2)

and the pull back of j-the degeneracy map sends objects in N(C),, to
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fl J id fJ fn
C—C—..—C—C—..—C,. (6.1.3)

The nerve of a category is a quasicategory, but in general not a Kan complex. In fact, only the

nerve of a groupoid is a Kan complex.

Proposition 6.1.9 [[Lu109], Proposition 1.1.2.2] Let K be a simplicial set, then K is isomorphic to the
nerve of a category C if and only if K is a quasicategory and the extension in Definition 6.1.7 is unique.
Moreover, the functor N : Cat — Set 5 is fully faithful.

The proposition above tells us that the theory of quasicategories is indeed an extension of
classical category theory. From now on, we will simply refer co-category to quasicategory and

identify the nerve of a 1-category with itself.

Definition 6.1.10

1. Given an co-category €, we say a functor A — € is an object of € and A! — € a morphism
of €. Amorphism f: Al — € has source d,(f) and target d, (f). If X is an object in €, then
we refer id y := sy(X) to the identity morphism of X.

2. [Segal axiom] Given two morphisms f, g : A' — € with d,(f) = dy(g), the composition g o
[+ Al — € is exhibited as the extension of A7 — € to a unique commutative triangle A? —
C, where f, g are Oth and 2nd faces respectively.

3. For any two co-categories € and D, we say F' : € — D is a functor of co-categories if it is a
morphism of underlying simplicial sets of € and 2. In general if € is a simplicial set and D

is an co-category, then Fun(€, D) is also an co-category.

Remark 6.1.11 The reader may ask in which purpose we have introduced Kan complex as a
more strict notation. In fact, one can show the geometric realization of a Kan complex is related
to a CW-complex, thus Kan complexes share the same homotopy properties like our usual
understanding of a “space”.

A moderner name for Kan complexes is anima, this was introduced recently by Clausen and
Scholze. Informally, the reader can understand an anima as a generalization of a set, or a space

with only homotopy type captured, forgetting the underlying geometry.

In order to prevent being confused by concrete models and constructions, especially the model

of simplicial sets above, we define the following objects in an axiomatic way:

Definition 6.1.12 There exists two co-categories An and Cat_, called the oco-category is small
animae and small co-categories, such that:
1. An < Cat is fully faithful.
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2. For any object ¢ € Cat,,, we can associate an up to equivalence unique small co-category €.
The same holds for An.

We are ready to define the homotopy category of an co-category.

Proposition 6.1.13 [[L1r09], Proposition 1.2.3.1] The functor N : Cat — Cat_ has a left adjoint h :
Cat,, — Cat which sends an oo-category € to its homotopy category hC.

Remark 6.1.14 Thanks to the extension property of quasicategories, we may have a good
description of the homotopy category of an co-category, using our usual understanding of

homotopy between maps. The reader may refer to [[Lur09], §1.2.3].

Definition 6.1.15

1. Amorphism f : Al — € inaco-category C is said to be an equivalence if it is an isomorphism
inh €.

2. Let € be an co-category, let €= C € be the largest simplicial subset such that all morphisms
in €= are equivalences. Then €~ is an anima and is called the core of €. For any other anima
K, the functor K — € must factor through ¢=.

The Hom-set between two objects in ordinary category now can be extended to a homotopy

object, called the mapping space in co-category.

Definition 6.1.16 Let S be a simplicial set, z,y € S, the mapping space Mapg(z,y) between
and y is just the space Map, g(z,y) € H inhomotopy category, where h S denote the homotopy
category of S regarded as a #-enriched category.

We do not need to worry too much about the technical details of # -enrichment as discussed

in [Lur09]. What really matters is the following theorem:

Proposition 6.1.17 [[L1709], Proposition 1.2.2.3] Let C be an oco-category, then for any two objects

z,y € C, the mapping space Mape (z,y) is an anima, called the Hom anima of x,y in C.

Using straightening and unstraightening as in [[Lur09], §3.2], one can show that this extends

to a functor
Home(—,—) : € x € — An (6.1.4)
where € is an co-category and An is the co-category of all (small) animae, which is defined in

Definition 6.1.12.

Definition 6.1.18 For any two objects ¢, d € Cat_, corresponding to small co-categories € and

D, there is an equivalence of animae
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Hom,, _(c,d) = Mapg,, (€, D). (6.1.5)

In particular, we can also define the functor category from € to 2 as the oo-category

Fun(C, D) := Homgy,,_(c,d). (6.1.6)

It’s convenient to have initial and terminal objects regarding to all co-categories.

Definition 6.1.19

1. The oo-category * = [0] is terminal in the sense that for any oco-category C, there is a
unique(up to equivalence) functor € — *. The co-category 0 is strict initial in the sense that
there is a unique functor ) — €, and every functor € — 0 is necessarily an equivalence.

2. An oo-category is contractible if ¢ — * is an equivalence.

3. Let Cbe an co-category and x € €. z is said to be an initial objectif for any y € €, the mapping
space Mape(z, y) is contractible. Analogously, z is a final object if Mape(y, ) is contractible

forany y € C.

We can use the above definition to talk about limits and colimits in co-category as in the usual 1
-category. Be careful the uniqueness of these objects are all up to the contractibility of mapping
spaces.

Finally we introduce two constructions of new co-categories: subcategories spanned by mor-

phisms and localizations at some morphisms.

Definition 6.1.20

1. A monomorphism between two co-categories €, D is a functor F' : ¢ — D such that

is a pullback square.

2. Let € be an oo-category, a collection of morphisms in € is a monomorphism M <
Map(A!, €) where M is another small co-category. We say the collection is closed under
composition if for any f : A' — € in M between z,y € €, the morphisms id,,, id,, are also in
M.Ifge M, thengo f: A = Cisalsoin M.

Definition 6.1.21

1. We refer (M). together with a functor i,;: (M). — € to the subcategory spanned by
collection of morphisms M in €, where M is closed under composition, if the following
conditions hold:
1. The induced functor (iy,), : Fun(A', (M)e) — Fun(A', €) factors through M.
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2. For any co-category 2, we have a pullback square
Fun(D, (M)e) > Fun(D, C)

l |

Fun(Fun(A!, D), M) —— Fun(Fun(A!, D),Fun(Al,€)).
2. LetT' < €~ be an embedding of co-categories. Let ev, : Fun(A!,€) — €~ x €~ be the map

extracting source and target objects of a morphism, Set M. to be the pullback of ev; and
inclusion I’ x I & €~ x €. We say (M) is the full subcategory spanned by objects in T’
inC.

Another construction is localization, where we invert certain family of morphisms.

Definition 6.1.22
1. Let € be an co-category, let W < Fun(A', €) be a collection of morphisms. An co-category
C[W 1] together with a functor I : € — €[W 1] is called the Dwyer-Kan localization of € at
the morphisms in W if the following conditions hold:
1. The functor I sends the morphisms in W into equivalences in €[W1].
2. For any co-category 2 we have a pullback square
Fun(C[W™1],D) ———— Fun(C, D)

|

Fun(W,Iso(2)~) —— Fun(W,Fun(Al, D)).
where Iso(2D) is the subcategory spanned by all equivalences in 2.
2. Incase W is the collection of all morphisms, we call the localization the geometric realization

of € and denoted by |€|, it is an anima by definition.

The localization of Top with respect to all weak equivalences is equivalent to An. This is exactly

the content of the homotopy hypothesis due to Grothendieck.

6.2 Stable co-category

We introduce the notion of stable co-categories. We show the homotopy category of a stable oo-
category is always a triangulated category. We will also discuss ¢-structures on these homotopy

categories.

Definition 6.2.1 An co-category C is pointed if there is a object 0 serving as the initial and

terminal objects at the same time.

Remark 6.2.2 There is a canonical way to equip a minimal pointed structure €, on an co-

category € with a terminal object * by the pullback square

56



¢, — Fun([1],C

o

Readers that have knowledge of algebraic topology may be familiar with following construc-

tions:

Definition 6.2.3 Let € be a pointed co-category, a null sequence(or triangle) in € is a commu-

tative square

Such a sequence is called:
1. afiber sequence if it is a pullback square in € and we write X = fib(g),

2. a cofiber sequence if it is a pushout square in € and we write Z =~ cofib(f).
There are some special fibers and cofibers which deserve a name:

Definition 6.2.4 Let € be a pointed co-category,

1. suppose € admits fibers, then the fiber of the unique map 0 — X is the loop object QX of
X, this defines a functor Q : € — C.

2. suppose € admits cofibers, then the cofiber of the unique map X — 0 is the suspension
object ©.X of X, this defines a functor ¥ : € — C.

Remark 6.2.5 We are not following the strict treatment of oo-category in the sense of §6.1 and
[Lur09]. Strictly speaking, the uniqueness here is up to contractibility of mapping spaces. A

much more formal definition of theses two functors can be found in [Lurl7].

Proposition 6.2.6 Let € be a pointed oo-category that admits fibers and cofibers, then the suspension
functor ¥ : € — C is left adjoint to 2 : € — C.

We are ready to define stable co-categories.

Definition 6.2.7 Let € be a pointed co-category, then € is a stable co-category if € admits fibers

and cofibers, and a null sequence is a fiber sequence iff it is a cofiber sequence.

One can check that there are following equivalent definitions of stable oo-categories.

57



Proposition 6.2.8 For a pointed oo-category € the following are equivalent:

1. € is stable.

2. C admits finite limits and colimits, and a commutative square is a pullback square iff it is a pushout
square, i.e. an exact square.

3. C admits fibers and the loop functor Q : € — C is an equivalence.

4. C admits cofibers and the suspension functor ¥ : € — C is an equivalence.

Proof. see e.g. [[Cno25], Theorem 3.2.7]. |

An immediate consequence of Proposition 6.2.8 is:
Corollary 6.2.9 The homotopy category of every stable co-category is additive.

We now install a triangulated structure on the underlying homotopy category h € of a stable co
-category C. For this, let us briefly review the theory of triangulated category and ¢-structures.
Let K be an additive category with an endofunctor [1] : K — K, called the suspension functor.
Atriangle in an additive category K isatuple (X,Y, Z,u,v,w) whereu: X - Y, v:Y — Z, w:
Z — X[1].

K is said to be a triangulated category if there’s a collection of distinguished triangles
(X,Y, Z,u,v,w) that fulfils following properties:

TRO. Every triangle that is isomorphic to a distinguished triangle is automatically distin-
guished.

TR1. The triangle (X, X, 0, 1,0, 0) is distinguished.

TR2. Every morphism u : X — Y embeds into a distinguished triangle (X,Y, Z, u, v, w).

TR3. The triangle (X,Y, Z, u, v, w) is a distinguished triangle iff (Y, Z, X[1], v, w, —u[1]) is.
TR4. Every commutative square

u
X —Y

|, |

X/ 3 Y/
embeds into a morphism of distinguished triangles.

TR5. (octahedral axiom) Given three distinguished triangles
X-5Y -2 - X[1
Y 57— X = Y[l (6.2.1)
X5 Z5Y 5 X[

there’s a distinguished triangle

7 5Y -5 X o 2] (6.2.2)
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which completes the octahedral diagram.

VU
Y
X > Y s 7

We can define t-structure on a triangulated category: Let K., and K_, be two strict full
subcategories of K. The pair (K, K_g) is a t-structure on K if
1. for X € K.gand Y € K., Homg (X,Y[1]) =0,
2. Ko[1] € Kugand K_o[—1] C K,
3. for any X € K there’s a distinguished triangle

Y=>X—>Z7 (6.2.3)

withY € K_jand Z € K [1].

The heart of a t-structure (K>, K,) on K is the full subcategory K¥ = K., N K, and itis an
abelian category.
By playing a little bit with the axioms, we see the inclusion K, := K_4[n] < K has a right
adjoint 7_,, : K — K_,,, similarly, the inclusion K, = K.4[n] < K has a left adjoint, which

wewriter,, : K — K.

Definition 6.2.10 Let € be a pointed co-category admits cofibers, a triangle (X,Y, Z, f, g, h) in

hC is said to be distinguished if there exists a diagram in €

f
X > Y > 0
h
0 > 7 > W

where f and § represents f and g, such that both squares are pushout diagrams in € and the
map h : Z — £ X is the composition of h and the isomorphism W =~ ¥ X determined by outer

rectangle.
In a stable co-category there’s a even simpler characterization.

Definition 6.2.11 For a stable co-category € the general shifting functor [n] : € — C is defined
by

2 ifn>0
[n] = . (6.2.4)
Q"ifn<0

Note that [m] o [n] =~ [m + n] and [0] =~ ide.
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f
Definition 6.2.12 Let X,Y, Z € C a stable co-category, we say the sequence X — Y 2 Zis

exact iff

is an exact square.

Since [n] is an equivalence, it preserves finite limits and finite colimits, thus also exact squares.
By induction and pasting law of pullback and pushout [[Lur09], Lemma 4.4.2.1] we have the

following proposition.

f g
Proposition 6.2.13 If X — Y — Z is an exact sequence in a stable co-category C, then:
9 f
1. Y — Z — X[1] and Z|—1] — X — Y are also exact.

fln] gln]
2. For every integer n, the sequence X|[n] — Y'[n] — Z[n] is exact.

Proposition 6.2.14 For € a stable co-category a triangle (X,Y, Z, f, g, h) is distinguished iff there are

- f .
morphisms f, g in C representing f, g such that X —Y 7y Z is an exact sequence and the map h :
Z — X|[1] from pasting law [[Lur09], Lemma 4.4.2.1] represents h.

Theorem 6.2.15 Let € be a stable co-category, the shifting functor together with distinguished triangles
defined in Definition 6.2.12 forms a triangulated structure on hC.

Proof. By Corollary 6.2.9 h€ is an additive category. It suffices to verify axioms of triangulated
category.

TRO and TR1 is obvious.

TR2 follows from the fact that if € is a stable category, then € admits cofibers. Pick f repre-
senting f : X — Y in C, then (X Y, cofib( f ) [, h) is distinguished where g is the homotopy
classof G: Y — cofib( f ) in € and h is canonical.

TR3 is exactly Proposition 6.2.13.

TR4. Suppose we have a diagram

f

X —Y

|, |

X/ 3 Y/

representing the diagram in hC, this can be extended to a diagram
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~
~

~
~

cofib(f') — X'[1]
since

f

X —Y

I

0 — cofib(f)
is a pushout diagram.
TR5. In view of the fact that every two cofibers are uniquely determined up to isomorphism, it

suffices to construct a cofiber sequence fits into the stronger commutative diagram in ¢, which

leads to
f g
X > Y > Z > 0
0 y 7/ Y’ » X[1] —— 0
0 > X' » Y[1] — Z'[1]
The sequence Z' — Y’ — X’ is exact by repeated use of the pasting law. O

Remark 6.2.16 The notion of stability of an co-category is purely intrinsic: we do not need
to equip extra structures on it. So is the triangulated structure on its homotopy category. In
fact, it is completely harmless to forget the axioms of triangulated categories and only treat
them as the homotopy category of some stable co-categories! Although not properly justified
in a chronological order, the triangulated category resembles the stable co-category in a usual

homotopy category, where most of homotopical information is lost.

If € is a stable co-category, then the way of putting a ¢-structure on its homotopy category is

closely related to certain localizations on C.

Definition 6.2.17 Let € be a stable co-category, we say C is equipped with a ¢-structure if h€
is equipped with such one. Accordingly we let C_,, and C.,, be those full subcategories of €
spanned by the objects in (h€)_,, and (hC).,,.

From the definition we have immediately the following proposition:
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Proposition 6.2.18 Let C be a stable co-category equipped with a t-structure. For every n € Z, C,, is

a localization of C.

Corollary 6.2.19 Let C be a stable co-category equipped with a t-structure. The full subcategories C_,,
are stable under all limits which exist in €. Dually the subcategories C-,, are stable under all colimits

which exist in C.
However, not every localization of € is related to a ¢-structure.

Definition 6.2.20 Let € be an co-category admits pushouts. A collection of morphisms S is
quasisaturated if the following conditions are satisfied:

1. Every equivalence in € belongs to S.

2. Given a 2-simplex A? — C, if any two of faces belong to S, so does the third.

3. Given a pushout

X — X

fl f’l

Y — Y’
if fe S, then f' € S.
For each collection of morphisms S, there exists a smallest quasisaturated collection S contain-

ing S. We call it generated by S.

Example 6.2.21 Let € be an oo-category admits pushouts, let L : ¢ — € be alocalization functor.
Let S be the collection of morphisms f such that L(f) is an equivalence. Then S is quasisat-

urated.

Definition 6.2.22 Let € be a stable co-category, a full subcategory €’ C € is closed under

extension if for any distinguished triangle
X =Y -7 X[1] (6.2.5)

such that X, Z € ¢’, then Y also belongs to ¢’.

Proposition 6.2.23 [[Lur17], Proposition 1.2.1.16] Let C be a stable oo-category, let L : € — C be a

localization functor. Set S as in Example 6.2.21. The followings are equivalent:

1. There exists a collection of morphisms {f : 0 — X} generating S.

2. The collection {0 — X : L(X) =~ 0} generates S.

3. The essential image of L is closed under extensions.

4. For any A€ C,B € LC, the natural map Ext'(LA, B) — Ext!(A, B) is injective, where
Ext!(A, B) := Hom,(A[—1], B).
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5. The full subcategories Cog = {A: LA ~0}and C._, = {A: LA ~ A} determine a t-structure on
C.

If any of these conditions is satisfied, then we call L a t-localization.

6.3 Examples of stable co-category

We still need a convincing example of stable oo-categories, therefore, we will construct not just
a single example, but a family of stable oo-categories and a method to turn any co-category
admitting finite (co)limits into a stable co-category.

Before introducing the construction, let us have a look at the functors between stable oo-

categories.

Definition 6.3.1

1. An oo-category is said to be left exact if it admits all finite limits. A functor between left
exact co-categories is said to be left exact if it preserves all finite limits. We denote the full
subcategory of left exact functors in Fun(€, D) as Fun® (€, D). Dually one can define right
exact categories and right exact functors.

2. Afunctor F : € — D is called exact if it is pointed (i.e., preserves zero objects) and sends

exact sequence to exact sequence. We denote the full subcategory of exact functors in
Fun(C, D) as Fun™(C, D).

Theorem 6.3.2 [[Lur09], Corollary 4.4.2.4]
1. An oo-category admits finite limits iff it has a terminal object and admits pullbacks.
2. Afunctor is left exact iff it preserves terminal objects and pullbacks.

In particular, a functor between stable co-categories is exact iff it is left exact iff it is right exact.

Very roughly speaking, the stabilization of € is a stable oo-category that “universally approxi-

mates” € from the left.

Definition 6.3.3 Let € be an co-category admits finite limits. The stabilization of € is a stable
oo-category Stab(C) together with a left exact functor 2% : Stab(€) — € such that for every

stable co-category D, the composition with 2 induces an equivalence

Fun® (2, Stab(€)) — Funk (D, €). (6.3.1)

We now explain how to construct such a stabilization of € via spectrum objects in €. This
construction matches the expectation that objects in Stab(€) should be a sequence {X,, } such
that X, ~ QX ;.

Definition 6.3.4 The oco-category of spectrum objects Sp(€) for € a small co-category is the

sequential limit
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%@:m%mgaﬁaia) (6.3.2)
in the co-category Cat, of small co-categories.

This definition can be extended to any oco-category, in particular, to the co-category of small

animae An. We denote 8 := Sp(An) the co-category of spectra.

Proposition 6.3.5 [[Lur17], Proposition 1.4.2.16, Proposition 1.4.2.24] The co-category of spectrum
objects Sp(C) is stable and the universal stabilization of € in the sense of Definition 6.3.3.

One can think of stable co-categories as an analogue of abelian groups in commutative algebra,
or an analogue of chain complexes in homological algebra: It behaves much like the derived
category of an abelian category. Contemplate this, we are going to justify the following defin-

ition.

Definition 6.3.6 Let .4 be an abelian category and Ch(A) the 1-category of chain complexes
with values in 4. The simplicial Dold-Kan correspondence [[Lur17], Theorem 1.2.3.7] allows
us to view Ch(A) as a simplicial category, and we may identify Ch(A) with its homotopy

coherent nerve.

Let W, be the collection of quasi-isomorphisms in Ch(.A), then the derived co-category of A
is the localization with respect to this collection:
D(A) = Ch(A) [Wz]. (6.3.3)

Proposition 6.3.7 [[Lur17], Proposition 1.3.5.9, Proposition 1.3.5.13] Let A be an abelian category,
then the derived oo-category D(.A) is presentably stable.

6.4 Symmetric monoidal structure

We will briefly introduce two special cases of &, -algebras: n =1 and n = oo cases. For a full
treatment of the theory, we refer readers to [[Lurl7], §3, §4].
We give the proper definition of fibrations of simplicial sets first. The theory of fibrations of

simplicial sets was studied in [[Lur09], §2] in detail.

Definition 6.4.1 A morphism f : X — S of simplicial sets is

1. a left fibration if f has the right lifting property with respect to all horn inclusions A} C
A" 0<i<n.

2. aright fibration if f has the right lifting property with respect to all horn inclusions A" C
A" 0< i< n.

3. aKan fibration if f is a left fibration and a right fibration.
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4. aninner fibration if f has the right lifting property with respect to all horn inclusions A} C

A™ 0 <i<n.

Definition 6.4.2 Let F' : ¢ — 2D be a functor of co-categories.

1. An edge f: X — Y in C is called F-coCartesian if the natural map €; , — Cx XD,
Dp () ; is a trivial Kan fibration, i.e., a Kan fibration that is at the same time weak homotopy
equivalence.

2. The functor F is called a coCartesian fibration if it is an inner fibration and for every edge
g: X =Y in D and X’ € € with F(X’) = X, there exists a F-coCartesian lift f of g with

source X'.

With the notation of coCartesian fibrations, we are able to define the notion of (commutative)
algebra objects in a (symmetric) monoidal co-category. We will use the fact that Cat,, admits
finite products.

Recall a morphism [n] — [m] in A is called convex if it is injective with image consisting of

consecutive integers.

Definition 6.4.3
1. Amonoidal co-category is an co-category C® together with a coCartesian fibration p : €® —

AP such that the Segal condition is fulfilled: for every [n] € A the Segal map
R || K5 (6.4.1)
i=1

induced by the n inclusion maps e, : [1] = {i —1 < i} < [n] is an equivalence. Here we
denote C’[QZ] to be the fiber of p over [n], viewed as a subcategory of C®. In such case, we say
that p induces a monoidal structure on € := 6[‘519].

2. A monoidal functor between monoidal oo-categories p : €® — A and ¢ : D¥ — A is a
functor sending p-coCartesian edges to g-coCartesian edges. More generally, a lax monoidal
functor is a functor sending p-coCartesian lifts of convex morphisms to g-coCartesian edges.

3. An & -algebra in €® a monoidal category is a lax monoidal functor A°® — €%, i.e., a simpli-
cial object in €® such that the Segal condition is fulfilled. We denote all & -algebras in €® to
be Alg(C®).

The definition of a symmetric monoidal co-category is similarly to the monoidal one, but we
need to use another index category that encodes the commutative property.

Let Fin, be the (nerve of) category of all pointed finite sets and set-theoretic maps. We write
{n} :={*,1,...,n} and call a morphism {n} — {m} inert if the preimage of elements that are

different from the base point is a singleton.

Definition 6.4.4

65



1. A symmetric monoidal co-category is an co-category C® together with a coCartesian fibra-

tionp : € — Fin, such that the Segal condition is fulfilled: for every {n} € Fin, the Segal map
(o), edy = Ieg, (6.4.2)
i=1

induced by the n fold maps p; : {n} — {1}, which sends i to 1 and rest to %, is an equivalence.
In such case, we say that p induces a symmetric monoidal structure on € := C’ﬁ b

2. A symmetric monoidal functor between symmetric monoidal co-categories p : €® — Fin,
and ¢ : D® — Fin, is a functor sending p-coCartesian edges to g-coCartesian edges. More
generally, a lax symmetric monoidal functor is a functor sending p-coCartesian lifts of inert
morphisms to g-coCartesian edges.

3. An &_-algebra, or commutative algebra in €® a symmetric monoidal category is a lax

symmetric monoidal functor Fin, — €®. We denote all £_-algebras in €% to be CAlg(C®).
There is a certain kind of symmetric monoidal structures that is important for us.

Proposition 6.4.5 [[Lur17], Proposition 2.4.1.5] If € is an oo-category with finite products, then
there is a coCartesian fibration C* — Fin, making C€* a symmetric monoidal co-category. We call this

symmetric monoidal structure the Cartesian monoidal structure on C.

Proposition 6.4.6 Suppose C*, D* are equipped with the Cartesian monoidal structure, then a functor

F : C — D is symmetric monoidal if and only if F preserves finite products.

If we equip the co-category with Cartesian monoidal structure, then the commutative algebra

objects in it are also called commutative monoids.

Example 6.4.7 [[Lurl7], Example 2.2.6.9] Let €®, D™ be symmetric monoidal co-categories.
Suppose D¥ admits all small colimits and the symmetric monoidal structure on 2D preserves
them in each variable. Then there is a symmetric monoidal structure on Fun(C, D), called the
Day convolution. Moreover, the commutative algebra objects in Fun(C, D) are precisely those

lax symmetric monoidal functors.

6.5 Presentable co-category

We begin by defining the co-category of presheaves and state an co-categorical Yoneda lemma.
As we have seen in Proposition 6.1.17, the Yoneda embedding should take values in the oo-

category of presheaves of spaces, which work as a generalized notion of sets.

Definition 6.5.1 For € an co-category, the category of presheaves of € is Fun(€C°, An), we
denote it by P(C).
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Under this definition, Lurie proves the for any € an co-category, (€) admits small limits and
colimits [[Lur09], Corollary 5.1.2.4].
The construction of a Yoneda embedding is cumbersome [[Lur09], §5.1.3], but we have can still

get a nice result as in 1-category.

Proposition 6.5.2 [[L1709], Proposition 5.1.3.1] Let C be an oco-category. The Yoneda embedding
£:0-20) (6.5.1)

is fully faithful.
Finally we describe a universal property of the presheaf category.

Theorem 6.5.3 [[L11709], Theorem 5.1.5.6] Let € be a small co-category and D be an co-category admit

small colimits, then the Yoneda embedding & : € — P(C) induces an equivalence of co-categories:
Funl(P(€), D) ~ Fun(C, D) (6.5.2)

where Fun’ is the category of all colimit preserving functors.

A close related concept with presheaves is the so called presentable co-categories. This relies
on the fact that even sometimes P(€) is not small, we can look at some subcategories that can

be controlled with small compact objects with colimits.

Definition 6.5.4 Let x be a regular cardinal. An co-category € is called k-accessible if € is locally
small, has all x-filtered colimits and € is generated under k-filtered colimits of x-compact

objects, which form a essentially small subcategory of €.

Definition 6.5.5 An co-category C is called presentable if it is accessible and admits all small

colimits.

We note that for any € an co-category, (C) is always presentable. In general however, there
is a nice characterization of all presentable co-categories as the accessible localizations of some

presheaves.

Lemma 6.5.6 [[Lur09], Lemma 5.5.1.4] Let F' : € — D be a functor between oo-categories with filtered
colimits. Let G be a right adjoint of F. Then G preserves filtered colimits if and only if F' preserves

compact objects.

Theorem 6.5.7 [[L.1r09], Theorem 5.5.1.1] Let C be an oo-category, then the followings are equivalent:
1. C is presentable.

2. There exists a small co-category D such that C is an accessible localization of P (D).

Now we state a very useful statement about the existence of adjoints, the adjoint functor

theorem:
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Theorem 6.5.8 [[Lu709], Corollary 5.5.2.9] Let F' : € — D be a functor between presentable co-
categories.

1. F has a right adjoint if and only if F" preserves colimits.

2. F has a left adjoint if and only if F preserves limits.

The following three propositions are about presentable stable co-categories:

Proposition 6.5.9 [[Lur17], Proposition 1.4.4.4] Let C be a presentable co-category, then the functor
0 : Stab(C) — C, admits a left adjoint £°° : C, — Stab(C).

Theorem 6.5.10 [[Lur17], Proposition 1.4.4.9] Let € be an oco-category, then the followings are equiv-

alent:

1. C is stable and presentable.

2. There exists a presentable stable co-category D such that C is an accessible left-exact localization
of D.

Proposition 6.5.11 [[Lur17], Proposition 1.4.4.11] Let C be a presentable stable co-category. Let { X, }
be a small collection of objects in C. The smallest full subcategory of C generated by X, under small

colimits and extensions is presentable.

The next two lemmata are about sifted colimits and spherical presheaves, which are used in

the construction of Thom spectra.

Definition 6.5.12
1. A non-empty co-category C is sifted if the diagonal functor A : € — € x € is a cofinal

functor, i.e., for any functor F : € x € — D, pre-composing with A preserves colimit:
A
colim (@ Sexel 2)) =~ colim (€ x € i ?) (6.5.3)
when either of the limits exists.

2. Asifted colimit in an co-category € is the colimit of diagrams F' : D — €, where 2 is a sifted

oo-category. All co-categories admitting sifted colimits span a subcategory Catsif in Cat,.
Proposition 6.5.13 [[Lur09], Prop. 5.5.8.15] The inclusion Catst — Cat__ has a left adjoint R, :
Cat., — Catsilt, which associates an co-category to the presheaves C°° — An that sends finite coprod-

ucts to products, called the co-category of spherical presheaves.

Definition 6.5.14 An co-topos X is an accessible left exact localization of P(€) where € is a

small co-category.
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6.6 Category of spans

Let € be an oco-category and left, right be two collections of morphisms in €, such that they
contain equivalences, are closed under composition and closed under pull back along each

other.

Definition 6.6.1 The co-category Span(C, left, right) is the category with objects the same as C,
and morphisms from X to Z are spans like X + Y % Z such that f is a left morphism and g

f h
is a right morphism. The composition of X < Y L ZandZ & W S Ads given by

J
Y x, W > W > A
_
h
+ g
Y —— 7
f
X

Definition 6.6.2 An co-category C is called extensive, if € admits finite coproducts and they
are disjoint (i.e., for every X, Y € €, X X xy Y is an initial object), and their decompositions

are stable under pullbacks.

Notation 6.6.3 We will mainly consider € = Smg the category of smooth schemes over S (note

Smyg is extensive) and following collections of morphisms:

1. all = all morphisms in €,

2. inj = all injective maps in C,

3. Suppose C is extensive, then we denote fold to be the classes of maps that are finite sums of
fold maps X" — X.

4. For simplicity we write Span(€) = Span(C, all, all).

Let D be an co-category with finite products, then functors Span(Fin) — 2 preserving finite

products are precisely the commutative monoids in D.

Proposition 6.6.4 [[BI21], Proposition C.1]

1. There is an equivalence of co-categories

Fin, ~ Span(Fin, inj, all)

f (6.6.1)
XX (X, -2Y)- (X(—?f‘%Y)—)Y).
2. Let D be an oo-category with finite products, then the restriction of
Fun(Span(Fin), 2) — Fun(Fin,, D) (6.6.2)

69



onto
Fun* (Span(Fin), D) — CAlg(D) (6.6.3)

is an equivalence of co-categories.

Now if € is extensive and 2 admits finite products, we have an obvious functor

© : €% x Span(Fin) — Span(€,all, fold), (X, F) - [ ] X. (6.6.4)
F

We can generalize the above proposition to spherical presheaves using ©.

Proposition 6.6.5 [[BI121], Proposition C.5] Let C be an extensive oco-category and D an oo-category
with finite products. The functor

©* : Fun(Span(C, all, fold), ) — Fun(€°? x Span(Fin), D) (6.6.5)
restricts to an equivalence of co-categories

Fun* (Span(€, all, fold), D) = Fun* (€, CAlg(D)). (6.6.6)

We need a relation of spans with Kan extension. For a functor F : Span(C, left, right) — D, we

let F|C : C°° — D be the restriction onto left morphisms.

Proposition 6.6.6 Let C, D be oco-categories and m be a collection of morphisms in € that is closed
under pull back and composition. Let C a full subcategory of C such that if X € €y and Y — X
is a m-morphism, then Y € C,. A functor F' : Span(C,, all, m) — D has a right Kan extension to
Span(C, all,m) — D iff the functor F|Cy : Cy" — D has a right Kan extension to C.

Proof. For X € €, the inclusion

Co xe Cx ; < Span(Cy, all,m) Xg,une, an,m) SPan(C,all,m) y (6.6.7)

has a right adjoint and hence is coinitial, This proves the statement. O

6.7 Pro-objects

We introduce pro objects, which is a generalization of presheaves.

Proposition 6.7.1 [[Lur09], Proposition 5.3.6.2] Let C be an oco-category, there is an oo-category
Pro(€) and a embedding j : € — Pro(C) with following universal properties:
1. Pro(C) has all small cofiltered limits.
2. Let D be an co-category with small cofiltered limits, let Fun’(C, D) be those functors that preserve
small cofiltered limits, then the embedding j induces an equivalence
Fun’ (Pro(€), D) = Fun(C, D) (6.7.1)
If € is accessible, we may identify Pro(C) with the full subcategory of Fun(C, An)°? spanned by functors

that are left-exact and accessible.
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Proposition 6.7.2 [[Lur09], Proposition 5.3.1.16] Every pro-object X € Pro(C) can be corepresented
by a diagram g — C where J is a small cofiltered partially ordered set.

We will refer to Pro(An) as the co-category of shapes, this name will be justified right now.
Let G : D — € be an co-functor of presentable co-categories preserving finite limits, a “slight
variant” of adjoint functor theorem gives us a pro-left adjoint F : € — Pro(D) to G. This
applies to the setting of oo-topoi. The following definition is a special case of shape theory as
in [[Lur09], §7.1.6].

Definition 6.7.3 Let X be an co-topos, let 7 : X' — Anbe the unique geometric morphism, 7, the
direct image functor. Let 7* be the left adjoint to ,. The above discussion ensures the existence
of a pro-left-adjoint =, : ' — Pro(An).
The fundamental pro-oco-groupoid of X is the shape

II_ X :=m1 € Pro(An) (6.7.2)

In other words, it is the composition 7, 7* : An — An.

6.8 £ -descendability

On the level of £ -rings, we have a notion of descendable objects, inspired by the concept
in obstruction theory. This is firstly introduced in [Mat16] and get a slight generalization in
[AS25].

Definition 6.8.1 Let f : R — S be a morphism of £ -rings. f is said to be &, -descendable if
the map of towers { R} — {Tot" (SA*“)}n is a pro-equivalence in Pro(CAlg(Modpg)).

We only need to use an equivalent characterization of £ -descendability for our purpose.

Proposition 6.8.2 [[AS25], Prop. 2.3] Let f : R — S be a morphism of £ -rings. The followings are
equivalent:

1. fis &, -descendable.

2. The map R — Tot™(S™*) admits an & -retraction for some n > 0.

3. If C is the smallest full subcategory of CAlg(Mody) which contains the &, -algebra that admits a

map from S and C is closed under finite limits and retractions, then € contains R.
Proposition 6.8.3 [[AS25], Lemma 2.5] Let F' : € — D be an exact lax symmetric monoidal functor of

symmetric monoidal stable co-categories. If f : R — S is & -descendable, then so is F(f) : F(R) —
F(S).

71



Bibliography

[ABG18]

[AHI25]

[Ant24]
[AE16]
[AS25]
[Ari21]
[ABH24]

[AHW17]

[Ayo07]

[Ayo10]
[Ayo21]
[Bac17]
[BH21]

[BBX25]

[BEM25]

[BEQ24]

M. Ando, A. Blumberg, and D. Gepner, “Parametrized spectra, multiplicative Thom
spectra and the twisted Umkehr map,” Geom. Topol., vol. 22, no. 7, pp. 3761-3825,
2018, doi: 10.2140/ gt.2018.22.3761.

T. Annala, M. Hoyois, and R. Iwasa, “Algebraic cobordism and a Conner-Floyd
isomorphism for algebraic K —theory”, J. Amer. Math. Soc., vol. 38, no. 1, pp. 243-289,
2025, doi: 10.1090/jams / 1045.

B. Antieau, “Spectral sequences, décalage, and the Beilinson ¢-structure”. arXiv
preprint, 2024. doi: 10.48550/ arXiv.2411.09115.

B. Antieau and E. Elmanto, “ A primer for unstable motivic homotopy theory.” arXiv
preprint, 2016. doi: 10.48550/ arXiv.1605.00929.

B. Antieau and G. Stefanich, “Report on E__-descendability”. arXiv preprint, 2025.
doi: 10.48550/ arXiv.2508.13089.

S. Ariotta, “Coherent cochain complexes and Beilinson ¢-structures, with an appen-
dix by Achim Krause”. arXiv preprint, 2021. doi: 10.48550/arXiv.2109.01017.

A. Asok, T. Bachmann, and M. J. Hopkins, “On P*-stabilization in unstable motivic
homotopy theory”. arXiv preprint, 2024. doi: 10.48550/arXiv.2306.04631.

A. Asok, M. Hoyois, and M. Wendt, “Affine representability results in Al-
homotopy theory, I: Vector bundles”, Duke Math. ]., vol. 166, no. 10, 2017, doi:
10.1215/00127094-0000014X.

J. Ayoub, “Les six opérations de Grothendieck et le formalisme des cycles évanes-
cents dans le monde motivique (I),” Astérisque, no. 314, p. x+464, 2007, doi:
10.24033/ ast.751.

J. Ayoub, “Note sur les opérations de Grothendieck et la réalisation de Betti,” J. Inst.
Math. Jussieu, vol. 9, no. 2, pp. 225-263, 2010, doi: 10.1017/51474748009000127.

J. Ayoub, “P!-localisation et une classe de Kodaira-Spencer arithmétique”, Tunisian
J. Math., vol. 3, no. 2, pp. 259-308, 2021, doi: 10.2140/ tunis.2021.3.259.

T. Bachmann, “The generalized slices of Hermitian K-theory”, J. Topol., vol. 10, no.
4, pp. 1124-1144, 2017, doi: 10.1112/t0p0.12032.

T. Bachmann and M. Hoyois, “Norms in Motivic Homotopy Theory,” Astérisque,
no. 425, p. ix+207, 2021, doi: 10.24033 / ast.1147.

T. Bachmann, R. Burklund, and Z. Xu, “Motivic stable stems and Galois approx-
imations of cellular motivic categories.” arXiv preprint, 2025. doi: 10.48550/
arXiv.2503.12060.

T. Bachmann, E. Elmanto, and M. Morrow, “A’-invariant motivic cohomology of
schemes”. arXiv preprint, 2025. doi: 10.48550/ arXiv.2508.09915.

T. Bachmann, E. Elmanto, and P. A. Ostveer, “Etale motivic spectra and Voevodsky's
convergence conjecture,” J. Eur. Math. Soc., vol. 27, no. 7, pp. 2653-2704, 2024, doi:
10.4171/jems/1421.

72


https://doi.org/10.2140/gt.2018.22.3761
https://doi.org/10.1090/jams/1045
https://doi.org/10.48550/arXiv.2411.09115
https://doi.org/10.48550/arXiv.1605.00929
https://doi.org/10.48550/arXiv.2508.13089
https://doi.org/10.48550/arXiv.2109.01017
https://doi.org/10.48550/arXiv.2306.04631
https://doi.org/10.1215/00127094-0000014X
https://doi.org/10.24033/ast.751
https://doi.org/10.1017/S1474748009000127
https://doi.org/10.2140/tunis.2021.3.259
https://doi.org/10.1112/topo.12032
https://doi.org/10.24033/ast.1147
https://doi.org/10.48550/arXiv.2503.12060
https://doi.org/10.48550/arXiv.2503.12060
https://doi.org/10.48550/arXiv.2508.09915
https://doi.org/10.4171/jems/1421

[Ban25]

[Bei87]

[BMS19]

[BM23]

[Blo86]

[Bou24]

[BK25]

[CM21]

[Cno25]

[CHK97]

[Del71]

[Dru22]

[Elm+22]

[Fri82]

[GS09]

[Ghe+22]

[HY20]

[Haz12]

J. Bannwart, “The real Betti realization of motivic Thom spectra and of very effective
Hermitian K-theory”. arXiv preprint, 2025. doi: 10.48550 / arXiv.2505.07297.

A. A. Beilinson, “On the derived category of perverse sheaves,” K-Theory, Arith-
metic and Geometry: Seminar, Moscow University, 1984-1986. Springer, Berlin, Heidel-
berg, pp. 27-41, 1987. doi: 10.1007 /BFb0078365.

B. Bhatt, M. Morrow, and P. Scholze, “Topological Hochschild Homology and
Integral $p$-Adic Hodge Theory,” Publ. Math. Inst. Hautes Etudes Sci., vol. 129, no.
1, pp. 199-310, 2019, doi: 10.1007 /s10240-019-00106-9.

F. Binda and A. Merici, “Connectivity and purity for logarithmic motives,” J. Inst.
Math. Jussieu, vol. 22, no. 1, pp. 335-381, 2023, doi: 10.1017/51474748021000256.

S. Bloch, “Algebraic cycles and higher K-theory”, Adv. Math., vol. 61, no. 3, pp. 267-
304, 1986, doi: 10.1016/0001-8708(86)90081-2.

T. Bouis, “Motivic cohomology of mixed characteristic schemes.” arXiv preprint,
2024. doi: 10.48550/ arXiv.2412.06635.

T. Bouis and A. Kundu, “A! -connectivity of motivic spaces”, no. arXiv:2512.10712.
arXiv preprint, 2025. doi: 10.48550/ arXiv.2512.10712.

D. Clausen and A. Mathew, “Hyperdescent and étale K-theory”, Invent. math., vol.
225, no. 3, pp. 981-1076, 2021, doi: 10.1007 /s00222-021-01043-3.

B. Cnossen, “Introduction to stable homotopy theory.” [Online]. Available: https:/ /
drive.google.com/file/d/1Sq171BDZ1mail9j7BWzjAbFBk4iP7ajN /

J.-L. Colliot-Thélene, R. T. Hoobler, and B. Kahn, “The Bloch-Ogus-Gabber theo-
rem,” Algebraic K-theory (Toronto, ON, 1996), vol. 16. in Fields Inst. Commun., vol.
16. Amer. Math. Soc., Providence, RI, pp. 31-94, 1997. doi: 10.1090/fic/016/02.

P. Deligne, “Théorie de Hodge, II,” Publ. Math. Inst. Hautes Etudes Sci., vol. 40, no.
1, pp. 5-57, 1971, doi: 10.1007 / BF02684692.

A. E. Druzhinin, “Stable Al-connectivity over a base”, . Reine Angew. Math., vol.
2022, no. 792, pp. 61-91, 2022, doi: 10.1515/ crelle-2022-0048.

E. Elmanto, M. Levine, M. Spitzweck, and P. A. Ostveer, “Algebraic cobordism and
étale cohomology,” Geom. Topol., vol. 26, no. 2, pp. 477-586, 2022, doi: 10.2140/
gt.2022.26.477.

E. M. Friedlander, Etale Homotopy of Simplicial Schemes, no. 104. in Annals of mathe-
matics studies. Princeton, N.J: Princeton University Press, 1982.

D. Gepner and V. Snaith, “On the motivic spectra representing algebraic cobordism
and algebraic K-theory”, Doc. Math., vol. 14, pp. 359-396, 2009, doi: 10.4171/
dm/276.

B. Gheorghe, D. C. Isaksen, A. Krause, and N. Ricka, “C-motivic modular forms”,
J. Eur. Math. Soc., vol. 24, no. 10, pp. 3597-3628, 2022, doi: 10.4171/jems/1171.

J. Hahn and A. Yuan, “Exotic multiplications on periodic complex bordism,” J.
Topol., vol. 13, no. 4, pp. 1839-1852, 2020, doi: 10.1112/ topo.12169.

M. Hazewinkel, Formal Groups and Applications, Reprinted with corrections., no. 375.
Providence, R.I: AMS Chelsea Publishing, 2012. doi: 10.1090/ chel /375.

73


https://doi.org/10.48550/arXiv.2505.07297
https://doi.org/10.1007/BFb0078365
https://doi.org/10.1007/s10240-019-00106-9
https://doi.org/10.1017/S1474748021000256
https://doi.org/10.1016/0001-8708(86)90081-2
https://doi.org/10.48550/arXiv.2412.06635
https://doi.org/10.48550/arXiv.2512.10712
https://doi.org/10.1007/s00222-021-01043-3
https://drive.google.com/file/d/1Sq17lBDZ1maiI9j7BWzjAbFBk4iP7ajN/
https://drive.google.com/file/d/1Sq17lBDZ1maiI9j7BWzjAbFBk4iP7ajN/
https://doi.org/10.1090/fic/016/02
https://doi.org/10.1007/BF02684692
https://doi.org/10.1515/crelle-2022-0048
https://doi.org/10.2140/gt.2022.26.477
https://doi.org/10.2140/gt.2022.26.477
https://doi.org/10.4171/dm/276
https://doi.org/10.4171/dm/276
https://doi.org/10.4171/jems/1171
https://doi.org/10.1112/topo.12169
https://doi.org/10.1090/chel/375

[Heal9]
[Hor05]
[Hoy15]
[Hoy18]
[Isa04]
[Lev08]
[Lev13]
[Levid]
[Levi5]
[Lur09]
[Lurl0]
[Lurl?7]
[Lurl8]
[Man18]
[Mat16]

[MVWO06]

[Mor05]
[MV99]

[NS@09]

D. Heard, “On equivariant and motivic slices,” Algebr. Geom. Topol., vol. 19, no. 7,
pp- 3641-3681, 2019, doi: 10.2140/agt.2019.19.3641.

J. Hornbostel, “Al-representability of Hermitian K-theory and Witt groups”, Topol-
ogy, vol. 44, no. 3, pp. 661-687, 2005, doi: 10.1016/j.top.2004.10.004.

M. Hoyois, “From algebraic cobordism to motivic cohomology,” J. Reine Angew.
Math., vol. 2015, no. 702, pp. 173-226, 2015, doi: 10.1515/ crelle-2013-0038.

M. Hoyois, “Higher Galois theory,” ]. Pure Appl. Algebra, vol. 222, no. 7, pp. 1859—
1877, 2018, doi: 10.1016/j.jpaa.2017.08.010.

D. C. Isaksen, “Etale realization on the A'-homotopy theory of schemes”, Adv.
Math., vol. 184, no. 1, pp. 37-63, 2004, doi: 10.1016/50001-8708(03)00094-X.

M. Levine, “The homotopy coniveau tower,” |. Topol., vol. 1, no. 1, pp. 217-267, 2008,
doi: 10.1112/jtopol /jtm004.

M. Levine, “Convergence of Voevodsky's slice tower,” Doc. Math., vol. 18, pp. 907—
941, 2013, doi: 10.4171/dm/416.

M. Levine, “A comparison of motivic and classical homotopy theories,” J. Topol.,
vol. 7, no. 2, pp. 327-362, 2014, doi: 10.1112/jtopol /jtt031.

M. Levine, “The Adams-Novikov spectral sequence and Voevodsky's slice tower,”
Geom. Topol., vol. 19, no. 5, pp. 2691-2740, 2015, doi: 10.2140/ gt.2015.19.2691.

J. Lurie, Higher topos theory, no. 170. in Annals of mathematics studies. Princeton,
N.J: Princeton University Press, 2009.

J. Lurie, “Chromatic Homotopy Theory.” [Online]. Available: https:/ / people.math.
harvard.edu/ ~lurie/252x.html

J. Lurie, “Higher Algebra.” [Online]. Available: https://www.math.ias.edu/~
lurie/ papers/HA.pdf

J. Lurie, “Spectral Algebraic Geometry.” [Online]. Available: https:/ /www.math.
ias.edu/ ~lurie/ papers/SAG-rootfile.pdf

L. Mantovani, “Localizations and completions in motivic homotopy theory,” Doc-
toral dissertation, arXiv, 2018. doi: 10.48550/arXiv.1810.04134.

A. Mathew, “The Galois group of a stable homotopy theory,” Adv. Math., vol. 291,
pp. 403-541, 2016, doi: 10.1016/j.aim.2015.12.017.

C. Mazza, V. Voevodsky, and C. A. Weibel, Lecture Notes on Motivic Cohomology,
vol. 2. in Clay Mathematics Monographs, vol. 2. Providence, R.I.; Cambridge, MA:
American Mathematical Society; Clay Mathematics Institute, 2006.

F. Morel, “The Stable A! -Connectivity Theorems”, K-Theory, vol. 35, no. 1-2, pp. 1-
68, 2005, doi: 10.1007 /s10977-005-1562-7.

F. Morel and V. Voevodsky, “Al-homotopy theory of schemes”, Publ. Math. Inst.
Hautes Etudes Sci., vol. 90, no. 1, pp- 45-143, 1999, doi: 10.1007 /BF02698831.

N. Naumann, M. Spitzweck, and P. A. Ostveer, “Motivic Landweber exactness,”
Doc. Math., vol. 14, pp- 551-593, 2009, doi: 10.4171/dm/282.

74


https://doi.org/10.2140/agt.2019.19.3641
https://doi.org/10.1016/j.top.2004.10.004
https://doi.org/10.1515/crelle-2013-0038
https://doi.org/10.1016/j.jpaa.2017.08.010
https://doi.org/10.1016/S0001-8708(03)00094-X
https://doi.org/10.1112/jtopol/jtm004
https://doi.org/10.4171/dm/416
https://doi.org/10.1112/jtopol/jtt031
https://doi.org/10.2140/gt.2015.19.2691
https://people.math.harvard.edu/~lurie/252x.html
https://people.math.harvard.edu/~lurie/252x.html
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://doi.org/10.48550/arXiv.1810.04134
https://doi.org/10.1016/j.aim.2015.12.017
https://doi.org/10.1007/s10977-005-1562-7
https://doi.org/10.1007/BF02698831
https://doi.org/10.4171/dm/282

[NSO15]

[Pst23]
[Pst25]
[Qui07]
[Rob15]
[Rud9s]

[Spil0]

[Spil2]

[Spil8]

[ST12]
[Sta25]

[TT90]

[Vez01]
[Voe98]

[Voe02]

[Voe04]

[Voel0]

N. Naumann, M. Spitzweck, and P. A. Ostveer, “Existence and uniqueness of E__
structures on motivic K-theory spectra”, J. Homotopy Relat. Struct., vol. 10, no. 3, pp.
333-346, 2015, doi: 10.1007 /s40062-013-0062-3.

P. Pstragowski, “Synthetic spectra and the cellular motivic category,” Invent. Math.,
vol. 232, no. 2, pp. 553-681, 2023, doi: 10.1007/s00222-022-01173-2.

P. Pstragowski, “Perfect even modules and the even filtration,” J. Eur. Math. Soc.,
2025, doi: 10.4171 /jems/1669.

G. Quick, “Stable étale realization and étale cobordism,” Adv. Math., vol. 214, no. 2,
pp- 730-760, 2007, doi: 10.1016/j.aim.2007.03.005.

M. Robalo, “K-theory and the bridge from motives to noncommutative motives”,
Adv. Math., vol. 269, pp. 399-550, 2015, doi: 10.1016/j.aim.2014.10.011.

Y. B. Rudyak, On Thom Spectra, Orientability, and Cobordism. in Springer Monographs
in Mathematics. Berlin, Heidelberg: Springer, 1998. doi: 10.1007 /978-3-540-77751-9.

M. Spitzweck, “Relations between slices and quotients of the algebraic cobordism
spectrum,” Homology Homotopy Appl., vol. 12, no. 2, pp. 335-351, 2010, doi: 10.4310/
HHA.2010.v12.n2.al1.

M. Spitzweck, “Slices of motivic Landweber spectra,” |. K-Theory, vol. 9, no. 1, pp.
103-117, 2012, doi: 10.1017/is010008019jkt128.

M. Spitzweck, “A commutative P!-spectrum representing motivic cohomology
over Dedekind domains”, Mémoires de la Société Mathématique de France. Nouvelle
Série, no. 157, p. 110, 2018, doi: 10.24033 / msmf.465.

M. Spitzweck and P. A. Ostvaer, “Motivic twisted K-theory”, Algebr. Geom. Topol.,
vol. 12, no. 1, pp. 565-599, 2012, doi: 10.2140/agt.2012.12.565.

Stacks project authors, “The Stacks project.” [Online]. Available: https:/ /stacks.
math.columbia.edu/

R. W. Thomason and T. Trobaugh, “Higher Algebraic K-Theory of Schemes and of
Derived Categories,” The Grothendieck Festschrift: A Collection of Articles Written in
Honor of the 60th Birthday of Alexander Grothendieck. Birkhauser, Boston, MA, pp. 247—
435, 1990. doi: 10.1007/978-0-8176-4576-2_10.

G. Vezzosi, “Brown-Peterson spectra in stable Al-homotopy theory”, Rend. Sem.
Mat. Univ. Padova, vol. 106, pp. 47-64, 2001.

V. Voevodsky, “Al-homotopy theory”, in Proceedings of the International Congress of
Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579-604.

V. Voevodsky, “Open problems in the motivic stable homotopy theory. I,” Motives,
Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998). in Int. Press Lect. Ser. Int.
Press, Somerville, MA, pp. 3-34, 2002.

V. Voevodsky, “On the zero slice of the sphere spectrum,” Tr. Mat. Inst. Steklova, vol.
246, pp. 106-115, 2004.

V. Voevodsky, “Motivic Eilenberg-MacLanes spaces,” Publ. Math. Inst. Hautes Etudes
Sci., vol. 112, no. 1, pp. 1-99, 2010, doi: 10.1007 /s10240-010-0024-9.

75


https://doi.org/10.1007/s40062-013-0062-3
https://doi.org/10.1007/s00222-022-01173-2
https://doi.org/10.4171/jems/1669
https://doi.org/10.1016/j.aim.2007.03.005
https://doi.org/10.1016/j.aim.2014.10.011
https://doi.org/10.1007/978-3-540-77751-9
https://doi.org/10.4310/HHA.2010.v12.n2.a11
https://doi.org/10.4310/HHA.2010.v12.n2.a11
https://doi.org/10.1017/is010008019jkt128
https://doi.org/10.24033/msmf.465
https://doi.org/10.2140/agt.2012.12.565
https://stacks.math.columbia.edu/
https://stacks.math.columbia.edu/
https://doi.org/10.1007/978-0-8176-4576-2_10
https://doi.org/10.1007/s10240-010-0024-9

	1 Introduction
	2 t-Structure on filtrations
	2.1 Filtrations and chain complexes
	2.2 Beilinson t-structure
	2.3 Décalage

	3 The stable motivic category
	3.1 Motivic space
	3.2 P1-invariance and stabilization
	3.3 A1-connectivity theorem
	3.4 Some motivic spectra
	3.5 Thom spectra

	4 Motivic filtrations and realizations
	4.1 Motivic slice tower
	4.2 Hopkins-Morel isomorphism
	4.3 Realization functor
	4.4 Realizations and slices

	5 Application: Spectral sequences
	5.1 Motivic Atiyah-Hirzebruch spectral sequence
	5.2 Comparison theorem
	5.3 A spectral sequence of étale cobordism

	6 Appendix: Higher category theory
	6.1 Definition of (∞, 1)-category
	6.2 Stable ∞-category
	6.3 Examples of stable ∞-category
	6.4 Symmetric monoidal structure
	6.5 Presentable ∞-category
	6.6 Category of spans
	6.7 Pro-objects
	6.8 E∞-descendability

	Bibliography

