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Abstract

We study the slice filtrations of motivic ring spectra and spectral sequences 

associated to them. Using décalage, we could relate Adams-Novikov spectral 

sequences with slice spectral sequences after suitable Betti realization and étale 

realization, this works in both characteristic zero and 𝑝 cases.

Zusammenfassung

Wir betrachten die Slice-Filtrationen motivischer Ringspektren und die zugehörigen 

Spektralsequenzen. Mit dem sogenannten Décalage-Funktor können wir 

Isomorphismen zwischen der Spektralsequenz von Adams-Novikov und der aus der 

Slice-Filtration stammenden Spektralsequenz nach geeigneter Betti- und étale 

Realisierung konstruieren. Der Ansatz ist sowohl in Charakteristik 0 als auch in 

Charakteristik 𝑝 anwendbar.



I imagined it infinite, made not only of eight-sided pavilions and of twisting paths

but also of rivers, provinces and kingdoms…

I though of a maze of mazes, of a sinuous, ever growing maze

which would take in both past and future and would somehow involve the stars.

Jorge Luis Borges, The Garden of Forking Paths
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1 Introduction

Where there is a spectral sequence, there is a filtration. In this thesis, we will have a close 

inspection of this “common sense”. In particular, the homotopy information of graded pieces 

of every filtration turns out to be a reasonable approximation of the homotopy information of 

the object, this approximation is realized via spectral sequences.

We will focus on the so called motivic ring spectra in motivic homotopy theory. In [Voe02] 

Voevodsky defined the slice filtration on these ring spectra and proposed a series of conjectures 

about it. several conjectures are related to the convergence of spectral sequences associated to 

certain slices, for example, the slice filtration on algebraic cobordism spectrum MGL.

Nowadays we know the behavior of the slice spectral sequence of MGL is more or less 

“topological”: as discovered in [Lev15], under Betti realization it is isomorphic to the Adams-

Novikov spectral sequence for calculating stable homotopy group of spheres. On the other 

hand, the slice filtration on MGL works as a “bridge” between stable motivic stems and 

topological stable stems as shown in Lemma 5.2.3 later. The goal of this thesis is to study these 

connections in a systematic way.

One of our main tools is called décalage, first mentioned in [Del71], and was explicitly used 

in the form of cosimplicial spectra by [Lev15], this tool is used to construct spectral sequences 

by translating higher pages into 𝐸1-page. Recently [Ant24] gives a nice reinterpretation of the 

theory in the setting of stable ∞-categories, making it possible to extend old results into the ∞
-categorical setting. We introduce these results now.

Let 𝑘 be an algebraically closed field of character zero. The embedding 𝑘 ↪︎ ℂ induces a Betti 

realization functor Reℂ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀. Let 𝕊𝑘 be the motivic sphere spectrum, i.e. the unit in 

𝒮︀ℋ︀(𝑘) and let 𝕊∗
𝑘 be the slice filtration on it.

We give new proofs of following theorems:

Theorem 1 [[Lev15], Theorem 1] Consider the Adams-Novikov spectral sequence

𝐸𝑠,𝑡
2 (𝐴𝑁) = Ext𝑠,𝑡

MU∗(MU)(MU∗, MU∗) ⟹ 𝜋𝑡−𝑠𝕊 (1.1)

and the motivic Atiyah-Hirzebruch spectral sequence

𝐸𝑝,𝑞
1 (𝐴𝐻) = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘). (1.2)

Then there is an isomorphism

𝛾𝑝,𝑞
1 : 𝐸𝑝,𝑞

1 (𝐴𝐻) ≅ 𝐸3𝑝+𝑞,2𝑝
2 (𝐴𝑁) (1.3)

which induces a sequence of isomorphisms of complexes for 𝑟 ≥ 1

⊕𝑝,𝑞 𝛾𝑝,𝑞
𝑟 : (⊕𝑝,𝑞 𝐸𝑝,𝑞

𝑟 (𝐴𝐻), 𝑑𝑟) → (⊕𝑝,𝑞 𝐸3𝑝+𝑞,2𝑝
2𝑟+1 (𝐴𝑁), 𝑑2𝑟+1). (1.4)

In other words, the Betti realization of the slice filtration spectral sequence in 𝒮︀ℋ︀(𝑘) is isomor

phic to the classical Adams-Novikov spectral sequence up to indices.
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Theorem 2 [[Lev15], Theorem 2] Fix a prime ℓ and the associated Brown-Peterson spectrum 

BP(ℓ). The isomorphism in Theorem 1 extends to an isomorphism of the ℓ-local Adams-

Novikov spectral sequence

𝐸𝑠,𝑡
2 (𝐴𝑁)ℓ = Ext𝑠,𝑡

BP(ℓ)
∗ (BP(ℓ))(BP(ℓ)

∗ , BP(ℓ)
∗ ) ⟹ 𝜋𝑡−𝑠𝕊 ⊗ ℤ(ℓ) (1.5)

and the ℓ-local motivic Atiyah-Hirzebruch spectral sequence

𝐸𝑝,𝑞
1 (𝐴𝐻)ℓ = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⊗ ℤ(ℓ) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘) ⊗ ℤ(ℓ). (1.6)

And we have our new result, answering the question in [[Lev15], Remarks 2.3]:

Theorem 3 Let 𝑘 be any algebraically closed field of characteristic 𝑝. Let ℓ ≠ 𝑝 be a prime 

number. Let MU∧
ℓ  be the ℓ-adic completion of complex cobordism. For simplicity We may 

denote 𝕊𝑘 and MU to be their Bott inverted counterparts as explained in §5.3. The Adams-

Novikov spectral sequence

𝐸𝑝,𝑞
2 (𝐴𝑁)∧

ℓ = Ext𝑠,𝑡
MU∧

ℓ,∗(MU∧
ℓ)(MU∧

ℓ,∗, MU∧
ℓ,∗) ⟹ (𝜋𝑡−𝑠𝕊)∧

ℓ (1.7)

converges and is isomorphic to the ℓ-complete motivic Atiyah-Hirzebruch spectral sequence

𝐸𝑝,𝑞
1 (𝐴𝐻)∧

ℓ = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊∗
𝑘[1 / 𝑝])(𝑘) ⊗ ℤℓ ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘[1 / 𝑝])(𝑘) ⊗ ℤℓ (1.8)

with isomorphisms induced by the étale realization functor.

Outline of the thesis: In Chapter 2 we introduce the abstract theory of décalage as developed 

in [Ant24]. In Chapter 3 we review the basic motivic homotopy theory, putting an emphasize 

on the construction of algebraic cobordism as a Thom spectrum. In Chapter 4 we construct slice 

filtrations of motivic spectra and realization functors, proving exactness condition and descent 

properties of them. Putting all these ingredients together, we give proofs of our main results in 

Chapter 5. In Appendix we collect some tools from higher category theory and higher algebra 

used in this thesis.

Convention: What we mean of an ∞-category is always an (∞, 1)-category in the sense of 

Lurie. We always identify an 1-category with its nerve. Every ring in this thesis is unitial.

Acknowledgements: I am very grateful to Alberto for being my supervisor, suggesting me 

this interesting topic and many useful discussions. I thank Liu Ou for his suggestion on ℰ︀∞

-descendability. I shall never forget Yuxue, Copper and many of my friends for their compan

ions. I thank Akira Complex for your touching music, you are my guiding star.

I would like to thank the Deutsche Forschungsgemeinschaft for financial support under the 

program CRC/TRR 326 Geometry and Arithmetic of Uniformized Structures, project number 

444845124.
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2 𝑡-Structure on filtrations

2.1 Filtrations and chain complexes

Let 𝒞︀ be an ∞-category with cofibers, an initial object 0 and a final object ∗.

Recall we can view ℤ as a category whose objects are the integers 𝑛 ∈ ℤ and there is at most 

one map 𝑛 → 𝑚, which exists when 𝑛 ≤ 𝑚.

Definition 2.1.1 The ∞-category of decreasing filtrations Fil(𝒞︀) is defined by

Fil(𝒞︀) ≔ Fun(ℤop, 𝒞︀) (2.1.1)

Similarly, one can define the ∞-category of increasing filtrations by replacing ℤop with ℤ.

Intuitively, a filtration F⋆ indexed by ℤop may looks like a sequence

… → F𝑠+1 → F𝑠 → F𝑠−1 → … (2.1.2)

This definition makes 𝒞︀ a full subcategory of Fil(𝒞︀) by viewing each object 𝑋 ∈ 𝒞︀ as a constant 

filtration.

Definition 2.1.2 We will also consider a filtration on an object 𝑋 of 𝒞︀: it is a filtration F★ together 

with a map F★ → 𝑋, where 𝑋 is viewed as a constant filtration. We denote the ∞-category of 

filtrations on objects as Fil(𝒞︀)/𝒞︀.

Consider the category ℤop
+  an extension of ℤop with a new terminal object −∞. We have an 

equivalence of ∞-categories:

Fil(𝒞︀)/𝒞︀ ≃ Fun(ℤop
+ , 𝒞︀). (2.1.3)

Definition 2.1.3 A filtration F★ on 𝑋 is exhaustive if 𝑋 ≃ colim𝑠F𝑠 ≕ F−∞. A filtration F★ is 

complete if F∞ ≔ lim𝑠F𝑠 ≃ 0. By construction, all complete filtrations form a full subcategory 

of filtrations, to which we denote Fil𝑐(𝒞︀).

Remark 2.1.4 Assuming 𝒞︀ has sequential colimits, which ensures the existence of the realization 

|F⋆| ≔ colim𝑠F𝑠 in 𝒞︀, each filtration F⋆ can be viewed as a filtration on |F⋆| = F−∞. If F⋆ is 

a filtration on 𝑋, then we have a canonical map |F⋆| → 𝑋 by taking the colimit, which is an 

equivalence iff F⋆ is exhaustive.

It’s also not hard to see the functor |−| : Fil(𝒞︀) → 𝒞︀ is a left adjoint of the constant functor 𝒞︀ →
Fil(𝒞︀). The picture we can bear in mind for this example is

… F𝑠+1 F𝑠 F𝑠−1 …

F−∞
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Definition 2.1.5 Let F⋆ be a filtration. The graded piece of F⋆ of degree 𝑠 ∈ ℤ is

gr𝑠F⋆ ≔ cofib(F𝑠+1 → F𝑠) (2.1.4)

More generally, for 𝑖 ≤ 𝑗, let gr[𝑖,𝑗)F⋆ = cofib(F𝑗 → F𝑖). By definition we have gr[𝑖,𝑖)F⋆ ≃ 0 

and gr[𝑖,𝑖+1)F⋆ ≃ gr𝑖F⋆. It’s convenient to denote gr(−∞,𝑗)F⋆ for colim𝑖gr[𝑖,𝑗)F⋆ and gr[𝑖,∞)F⋆ for 

lim𝑗gr[𝑖,𝑗)F⋆.

If the context is clear, we may drop out F⋆ and simply write gr[𝑖,𝑗).

The graded piece gr[𝑖,𝑗) itself has a filtration

… → 0 → gr𝑗−1 → gr[𝑗−2,𝑗) → … → gr[𝑖,𝑗) ⟶
id

gr[𝑖,𝑗) ⟶
id

… (2.1.5)

by the nature of cofiber sequences with gr𝑗−1 put in the filtration degree 𝑗 − 1. The graded piece 

of gr[𝑖,𝑗) would be

gr𝑘(gr[𝑖,𝑗)) ≔ {
gr𝑘(F⋆) if 𝑖 ≤ 𝑘 < 𝑗
0 else

(2.1.6)

Example 2.1.6 We can equip a cochain complex 𝑋∙ ∈ Ch⋆(ℤ) with the so-called truncation 

filtration 𝜎⋆𝑋∙ by 𝜎𝑠𝑋∙ = 𝑋≥𝑠. It’s a complete exhaustive filtration by definition. Looking at 

the underlying homotopy type produces a filtration 𝜎⋆𝑋 on 𝑋, the image of 𝑋∙ in D(ℤ) as 

derived ∞-category. The 𝑠-th graded piece of 𝜎⋆𝑋∙ is gr𝑠(𝜎⋆𝑋∙) ≅ 𝑋𝑠 placed at the cohomo

logical degree 𝑠, while the 𝑠-th graded piece of 𝜎⋆𝑋 is gr𝑠(𝜎⋆𝑋) ≅ 𝑋𝑠[−𝑠].

Example 2.1.7 Let 𝒮︀ℋ︀ be the ∞-category of spectra with the usual Postnikov 𝑡-structure. Then 

for each 𝑋 ∈ 𝒮︀ℋ︀ the Whitehead tower defines a filtration on 𝑋:

… → 𝜏≥𝑛+1𝑋 → 𝜏≥𝑛𝑋 → 𝜏≥𝑛−1𝑋 → … (2.1.7)

This is a complete and exhaustive filtration on 𝑋 as the Postnikov 𝑡-structure is compatible 

with filtered colimits. The graded piece is gr𝑠𝑋 ≃ 𝜋𝑠𝑋[𝑠].

A common approach of understanding new objects in mathematics is finding a suitable filtra

tion, taking the graded pieces, and trying to extract the information of the original object from 

them. One method of computing these information is via spectral sequences. For the remaining 

part of this chapter, we will introduce two methods for constructing spectral sequences asso

ciated to filtrations.

Definition 2.1.8 If 𝒞︀ admits sequential limits, the inclusion Fil𝑐(𝒞︀) ⊂ Fil(𝒞︀) has a left adjoint, 

which is the completion of a filtration. Explicitly the filtration is given by

F̂𝑠 ≔ cofib(F∞ → F𝑠) (2.1.8)

Suppose F⋆ is a filtration on 𝑋, we set 𝑋̂ ≔ cofib(F∞ → 𝑋), then the completion F̂⋆ is a 

complete filtration on 𝑋̂.
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By taking graded pieces, we will lose some information contained in filtrations, for example, 

the differentials:

There is an analogy of cochain complexes in the graded structure of filtrations. This was already 

known by Beilinson as in [Bei87] and in [[Lur17], §1.2.2] it was considered under the name of 

𝒥︀-complex. For this, we need 𝒞︀ to be a stable ∞-category.

Let F⋆ be a filtration over 𝒞︀, the cofiber sequence

gr𝑠+1 → gr[𝑠,𝑠+2) → gr𝑠 (2.1.9)

gives rise to a map 𝑑𝑠 : gr𝑠 → gr𝑠+1[1].

Proposition 2.1.9 𝑑𝑠 ∘ 𝑑𝑠−1 ≃ 0.

Proof. Immediately from the following diagram:

𝑑
𝑑

gr𝑠+2 gr[𝑠+1,𝑠+3) gr𝑠+1 gr𝑠+2[1]

gr𝑠+2 gr[𝑠,𝑠+3) gr[𝑠,𝑠+2) gr𝑠+2[1]

gr[𝑠+2,𝑠+2) ≃ 0 gr𝑠 gr𝑠 gr[𝑠+2,𝑠+2)[1] ≃ 0

gr𝑠+2[1] gr[𝑠+1,𝑠+3)[1] gr𝑠+1[1] gr𝑠+2[2]

where all rows and columns are cofiber sequences. □
Inspired by this proposition, we may define a chain complex structure on pointed ∞-category 

𝒞︀. Let Ξ be the pointed 1-category with objects in ℤ∗, the pointed integers, where ∗ is both initial 

and terminal. The morphisms of Ξ can be described as follows:

HomΞ(𝑚, 𝑛) =

{



∗ if 𝑛 ≠ 𝑚, 𝑚 − 1

id, ∗ if 𝑛 = 𝑚
𝛿, ∗  if 𝑛 = 𝑚 − 1

(2.1.10)

such that 𝛿 ∘ 𝛿 = ∗.

Definition 2.1.10 Let 𝒞︀ be a pointed ∞-category, the ∞-category of coherent cochain complexes 

Ch∙(𝒞︀) is defined to be the pointed functor category Fun∗(Ξop, 𝒞︀), while the coherent chain 

complexes Ch∙(𝒞︀) are the covariant pointed functors Fun∗(Ξ, 𝒞︀).

Remark 2.1.11 If 𝒜︀ is an abelian category in the usual sense, then Ch∙(𝒜︀) is just the category 

of cochain complexes on 𝒜︀.
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2.2 Beilinson 𝑡-structure

The following theorem is due to Ariotta. It relates a complete filtration with a coherent cochain 

complex in a stable ∞-category.

Theorem 2.2.1 [[Ari21], Theorem 4.7] Let 𝒞︀ be a stable ∞-category with sequential limits. There is a 

canonical categorical equivalence of complete filtrations and coherent cochain complexes:

Fil𝑐(𝒞︀) ≃ Ch∙(𝒞︀) (2.2.1)

which sends a complete filtration F⋆ to a cochain complex 𝐶 with 𝐶𝑛 ≃ gr𝑛F⋆[𝑛].

Definition 2.2.2 Let (𝒞︀≥0, 𝒞︀≤0) be a 𝑡-structure on a stable ∞-category 𝒞︀ with sequential limits. 

Consider the pointwise 𝑡-structure on Ch∙(𝒞︀), by (2.2.1) we can thus define a 𝑡-structure 

(Fil𝑐(𝒞︀)Б≥0, Fil𝑐(𝒞︀)Б≤0) on Fil𝑐(𝒞︀), which is called the Beilinson 𝑡-structure on Fil𝑐(𝒞︀).

Remark 2.2.3 Unfold the equivalence in Theorem 2.2.1, the connective objects in Beilinson 𝑡
-structure are just those complete filtrations F⋆ such that gr𝑛F⋆ ∈ 𝒞︀≥−𝑛, and coconnective 

objects are those F⋆ such that gr𝑛F⋆ ∈ 𝒞︀≤−𝑛. The heart of the Beilinson 𝑡-structure is Ch∙(𝒞︀)♡ ≃
Ch∙(𝒞︀♡).

Historically, in [Bei87] Beilinson tried to define the 𝑡-structure on non-complete filtration Fil(𝒞︀) 
by declaring Fil(𝒞︀)Б≥0 as the full subcategory of those filtrations F⋆ with gr𝑛F⋆ ∈ 𝒞︀≥−𝑛. This is 

however better to handle the non-complete case like the following:

Construction 2.2.4 For incomplete filtrations F⋆ ∈ Fil(𝒞︀), we may consider the adjunction pairs

𝑖

𝑖R

⟂

𝑖L

⟂

𝑗

𝑗L

𝒞︀ Fil(𝒞︀) Fil𝑐(𝒞︀)⟂

where 𝑖 the constant filtration functor and 𝑗 the inclusion. From the previous section we know

𝑖L(F⋆) = |F⋆|

𝑖R(F⋆) = F∞

𝑗𝐿(F⋆) = F̂⋆.

(2.2.2)

Now let (𝒞︀𝑡
≥0, 𝒞︀𝑡

≤0) ≔ (𝒞︀, 0) be the trivial 𝑡-structure on 𝒞︀, we can define the glued 𝑡-structure 

on Fil(𝒞︀) given by

Fil(𝒞︀)≥0 = {F⋆ ∈ Fil(𝒞︀) : 𝑗L(F⋆) ∈ Fil𝑐(𝒞︀)Б≥0, 𝑖L(F⋆) ∈ 𝒞︀𝑡
≥0}

Fil(𝒞︀)≤0 = {F⋆ ∈ Fil(𝒞︀) : 𝑗L(F⋆) ∈ Fil𝑐(𝒞︀)Б≤0, 𝑖R(F⋆) ∈ 𝒞︀𝑡
≤0}.

(2.2.3)
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Explain in words, a connective object in Fil(𝒞︀) is just a filtration whose completion is connective 

in Fil𝑐(𝒞︀) with respect to Beilinson 𝑡-structure and a coconnective object is a complete filtration 

which is coconnective in Fil𝑐(𝒞︀), i.e. Fil(𝒞︀)≤0 ≃ Fil𝑐(𝒞︀)Б≤0.

Remark 2.2.5 In our setting we will call this construction on Fil(𝒞︀) also the Beilinson 𝑡-structure. 

But be aware of the difference between this 𝑡-structure and the one defined in [Bei87]. Only 

under the assumption of right separateness of (𝒞︀≥0, 𝒞︀≤0) we can prove the equivalence of these 

two structures, for a proof see [[Ari21], Theorem 5.11].

We consider the following composition of functors

Ch∙(𝒞︀♡) ↪︎ Fil𝑐(𝒞︀)Б≥0 ↪︎ Fil𝑐(𝒞︀) ↪︎ Fil(𝒞︀) ⟶
|−|

𝒞︀ (2.2.4)

which sends a coherent cochain complex 𝑋∙ to |𝜎⋆𝑋∙|, where 𝜎⋆𝑋∙ is the truncation filtration 

defined in Example 2.1.6. For simplicity we just write |𝑋∙|.

Lemma 2.2.6 Let 𝒞︀ be a stable ∞-category with sequential limits and colimits, let (𝒞︀≥0, 𝒞︀≤0) be a 𝑡-
structure on 𝒞︀. For 𝑋∙ ∈ Ch∙(𝒞︀) a coherent cochain complex, we have

𝐻−𝑛(𝑋∙) ≅ 𝜋𝑛(|𝑋∙|) (2.2.5)

Proof. By shifting we reduce to the case 𝑛 = 0. Recall the graded piece on 𝜎⋆𝑋 is given by 

gr𝑛𝜎⋆𝑋 = 𝑋𝑛[−𝑛] for 𝑋 ∈ Ch∙(𝒞︀). We can construct the following short exact sequence in 𝒞︀♡:

0 → 𝜋0gr[0,2) → 𝑋0 ⟶
𝑑

𝑋1 → 𝜋−1gr[0,2) → 0. (2.2.6)

This implies that we can identify 𝜋0gr[0,2) with the cocycle 𝑍0 of degree 0. On the other hand, 

the fiber sequence gr[0,2) → gr[−1,2) → gr−1 yields an exact sequence

𝑋−1 ⟶
𝑑

𝑍0 → 𝜋0gr[−1,2) → 0. (2.2.7)

This shows 𝜋0gr[−1,2) ≅ 𝐻0(𝑋∙).
Next we notice 𝜏≥0gr[−1,𝑠+1) → 𝜏≥0gr[−1,𝑠) is an equivalence for 𝑠 ≥ 2 by applying 𝜏≥0 to the 

fiber sequence

gr[−1,𝑠+1) → gr[−1,𝑠) → 𝑋𝑠[−𝑠 + 1]. (2.2.8)

Passing to lim𝑠 yields

𝜏≥0gr[−1,∞) ≃ lim
𝑠

𝜏≥0gr[−1,𝑠) ≃ 𝜏≥0gr[−1,2) (2.2.9)

and 𝜋0gr[−1,∞) ≅ 𝐻0(𝑋∙). Moreover for 𝑡 ≥ 1, 𝜏≤0gr[−𝑡,∞) → 𝜏≤0gr[−𝑡−1,∞) is an equivalence 

using the cofiber sequence

gr−𝑡−1[−1] → gr[−𝑡,∞) → gr[−𝑡−1,∞). (2.2.10)

Passing to colim𝑡 yields

𝜏≤0𝑋 ≃ colim𝑡𝜏≤0gr[−𝑡,∞) ≃ 𝜏≤0gr[−1,∞). (2.2.11)
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As 𝜋0 ≃ 𝜏≤0 ∘ 𝜏≥0, this completes the proof. □
The following lemma will be helpful in the next section.

Lemma 2.2.7 If F⋆𝑋 is a complete filtration on 𝑋, then each 𝜏Б
≥𝑛(F⋆𝑋) is complete.

Proof. As there is a cofiber sequence in Fil(𝒞︀)

𝜏Б
≥𝑛(F⋆𝑋) → F⋆𝑋 → 𝜏Б

≤𝑛−1(F⋆𝑋) (2.2.12)

the lemma now follows from the assumption and the fact Fil(𝒞︀)Б≤0 ≃ Fil𝑐(𝒞︀)Б≤0. □

2.3 Décalage

In this section we fix 𝒞︀ a stable ∞-category with sequential limits and colimits, equipped with 

a 𝑡-structure (𝒞︀≥0, 𝒞︀≤0).

Inspired by Deligne’s décalage operation [Del71], Levine considered a naïve version of 

décalage of cosimplicial spectra in [[Lev15], §6], in order to give a comparison between 

the motivic Atiyah-Hirzebruch sequence and the Adams-Novikov sequence for the complex 

cobordism spectrum. Later in [BMS19] this was again defined using Beilinson 𝑡-structure (cf. 

[[BMS19], Proposition 5.8]). The equivalence of this definition with Deligne’s construction was 

shown in [Ant24]. We will mainly follow the last reference in the section.

As discussed in the previous section, a filtration F⋆ gives rise to a coherent cochain complex

… → gr−𝑠−1F⋆[−𝑠 − 1] → gr−𝑠F⋆[−𝑠] → gr−𝑠+1F⋆[−𝑠 + 1] → … (2.3.1)

Apply the 𝜋𝑡 functor and after suitable suspension yields a coherent cochain complex in the 

heart 𝒞︀♡ of 𝒞︀

… → 𝜋𝑠+𝑡+1gr−𝑠−1F⋆ → 𝜋𝑠+𝑡gr−𝑠F⋆ → 𝜋𝑠+𝑡−1gr−𝑠+1F⋆ → … (2.3.2)

Definition 2.3.1 Let F⋆ be a filtration. Consider the Whitehead tower with respect to the 

Beilinson 𝑡-structure on Fil(𝒞︀)

… → 𝜏Б

≥𝑛+1F⋆ → 𝜏Б
≥𝑛F⋆ → 𝜏Б

≥𝑛−1F⋆ → … (2.3.3)

By taking the realization, we get a new filtered object of 𝒞︀

… → |𝜏Б

≥𝑛+1F⋆| → |𝜏Б
≥𝑛F⋆| → |𝜏Б

≥𝑛−1F⋆| → … (2.3.4)

This is called the décalage of F⋆, and we denote Dec∙(F⋆). If F⋆ is a filtration on 𝑋, Since we 

have natural maps 𝜏Б
≥𝑛F⋆ → F⋆, we then have a map

|𝜏Б
≥𝑛F⋆| → |F⋆| → 𝑋 (2.3.5)

hence Dec∙(F⋆) is a filtration on 𝑋.

It’s immediate to see the graded pieces of Dec∙(F⋆) are given by

gr𝑛Dec∙(F⋆) ≃ |𝜋Б
𝑛(F⋆)|[𝑛] (2.3.6)

as 𝜏Б

≥𝑛+1(F⋆) → 𝜏Б
≥𝑛(F⋆) → 𝜋Б

𝑛(F⋆) is a cofiber sequence.
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Remark 2.3.2 The cochain complex of homotopy groups of F⋆ with respect to the Beilinson 𝑡-
structure is denoted 𝜋Б

𝑛(F⋆)∙, which by (2.3.2) is

… → 𝜋𝑛+1gr−1 → 𝜋𝑛gr0 → 𝜋𝑛−1gr1 → … (2.3.7)

this is precisely the 𝑛-th vertical column of the 𝐸1-page of the spectral sequence associated 

to F⋆ as in [Lur17]. This illustrates another interpretation of the décalage functor: the 𝑛-fold 

suspension of realization of 𝜋Б
𝑛(F⋆)∙

Before proceeding to higher pages of spectral sequences, we give some important examples of 

the décalage functor.

Example 2.3.3 If F⋆𝑋 is the constant filtration on 𝑋, then each 𝜏Б

≥0(F⋆𝑋) is a constant filtration 

and so is Dec∙(F⋆𝑋) on 𝑋.

We already know that each cofiber sequence F⋆𝑋′ → F⋆𝑋 → F⋆𝑋″ induces a long exact 

sequence in Ch∙(𝒞︀♡):

… → 𝜋Б

𝑛+1(F⋆𝑋″) → 𝜋Б
𝑛(F⋆𝑋′) → 𝜋Б

𝑛(F⋆𝑋) → 𝜋Б
𝑛(F⋆𝑋″) → 𝜋Б

𝑛−1(F⋆𝑋′) → … (2.3.8)

This in general does not break into short exact sequences as the connecting homomorphism is 

not trivial. However, the following example is an exception.

Example 2.3.4 Let F⋆ be a filtration. We have a cofiber sequence of filtrations

gr[𝑏,𝑐) → gr[𝑎,𝑐) → gr[𝑎,𝑏) (2.3.9)

for −∞ ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ ∞. Then this induces a short exact sequence

0 → 𝜋Б

0(gr[𝑏,𝑐)) → 𝜋Б

0(gr[𝑎,𝑐)) → 𝜋Б

0(gr[𝑎,𝑏)) → 0 (2.3.10)

Indeed, the middle term expands to

… → 0 → 𝜋−𝑐+1F𝑐−1 → … → 𝜋−𝑎−1F𝑎+1 → 𝜋−𝑎F𝑎 → 0 → … (2.3.11)

while the left and right terms are just truncations of this cochain complex.

Example 2.3.5 By the exactness of geometric realizations and previous example

Dec∙(gr[𝑏,𝑐)) → Dec∙(gr[𝑎,𝑐)) → Dec∙(gr[𝑎,𝑏)) (2.3.12)

is a cofiber sequence of filtered objects.

Let ins𝑠 : 𝒞︀ → Fil(𝒞︀) be the left Kan extension of the constant functor 𝒞︀ → Fil(𝒞︀) along the 

inclusion {𝑠} ↪︎ ℤop. Concretely, we have

F𝑖ins𝑠𝑋 ≃ {
0 if 𝑖 > 𝑠
𝑋 if 𝑖 ≤ 𝑠

(2.3.13)

and all transition maps are the identity.
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Lemma 2.3.6 The functor ins𝑠 : 𝒞︀ → Fil(𝒞︀) is 𝑡-exact with respect to the Beilinson 𝑡-structure.

Proof. As ins𝑠 lands in Fil𝑐(𝒞︀), it’s enough to show it is 𝑡-exact on the coherent cochain complex 

by Theorem 2.2.1. Under this equivalence, ins𝑠𝑋 is the complex given by 𝑋[𝑠] in degree 𝑠 and 

0 elsewhere and is surely 𝑡-exact. □

Corollary 2.3.7 Let F⋆ be a filtration on 𝑋. The filtration on Dec∙(gr𝑠F⋆𝑋) is equivalent to 

𝜏≥−𝑠+∙gr𝑠F⋆𝑋. In particular, one has

gr[𝑟,∞)(Dec∙(gr𝑠F⋆𝑋)) ≃ 𝜏≥−𝑠+𝑟gr𝑠F⋆𝑋

gr(−∞,𝑟](Dec∙(gr𝑠F⋆𝑋)) ≃ 𝜏≤−𝑠+𝑟gr𝑠F⋆𝑋
(2.3.14)

Proof. It suffices to consider the case 𝑠 = 0, in which we have

𝜏Б
≥∙(gr0F⋆𝑋) = 𝜏Б

≥∙(ins0𝑋) ≃ ins0(𝜏≥∙𝑋) (2.3.15)

by the previous lemma. Taking colimits finishes the proof. □
If we are not focusing on the filtration property of décalage, we will just write Dec(F⋆).
The most important usage of décalage functor is to build spectral sequences.

Definition 2.3.8 The 𝐸𝑟-page of the spectral sequence associated to a filtration F⋆ is defined 

inductively to be

𝐸𝑠,𝑡
1 (F⋆) ≔ 𝜋𝑠+𝑡gr−𝑠F⋆

𝐸𝑠,𝑡
𝑟+1(F⋆) ≔ 𝐸−𝑡,𝑠+2𝑡

𝑟 (Dec(F⋆))
(2.3.16)

together with the differential from (2.3.2):

𝑑𝑠,𝑡
1 : 𝜋𝑠+𝑡gr−𝑠F∗ → 𝜋𝑠+𝑡−1gr−𝑠+1F∗

𝑑𝑠,𝑡
𝑟+1 ≔ 𝑑−𝑡,𝑠+2𝑡

𝑟 .
(2.3.17)

Lemma 2.3.9 The construction in Definition 2.3.8 indeed gives a spectral sequence.

Proof. We need to show the 𝐸𝑟+1-page is the cohomology of 𝐸𝑟-page. We do it by induction on 

𝑟 and it’s enough to check it by 𝑟 = 1.

𝐸𝑠,𝑡
2 (F⋆) = 𝐸−𝑡,𝑠+2𝑡

1 (Dec(F⋆)) ≅ 𝜋𝑠+𝑡gr𝑡(Dec(F⋆)) ≅ 𝜋𝑠+𝑡(|𝜋Б
𝑡 (F⋆)|[𝑡])

≅ 𝜋𝑠(|𝜋Б
𝑡 (F⋆)|) ≅ 𝐻−𝑠(𝜋Б

𝑡 (F⋆)∙) ≕ 𝐻𝑠(𝐸∙,𝑡
1 (F⋆))

(2.3.18)

where the last isomorphism comes from Lemma 2.2.6. □
We introduce another construction of spectral sequences due to [[Lur17], §1.2.2]. The advantage 

of this construction is that it does not assume the ∞-category 𝒞︀ admits sequential limits and 

colimits.
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Construction 2.3.10 Let 𝑟 ≥ 1, consider the commutative square

F−𝑠+𝑟 F−𝑠

F−𝑠+1 F−𝑠−𝑟+1

By taking the cofibers we get a natural map gr[−𝑠,−𝑠+𝑟) → gr[−𝑠−𝑟+1,−𝑠+1), this fits into the 

following commutative diagram

gr[−𝑠,−𝑠+2𝑟) gr[−𝑠+𝑟,−𝑠+2𝑟) gr[−𝑠,−𝑠+𝑟)

gr[−𝑠−𝑟+1,−𝑠+𝑟+1) gr[−𝑠+1,−𝑠+𝑟+1) gr[−𝑠−𝑟+1,−𝑠+1)

where the horizontal lines are cofiber sequences.

We set 𝐸𝑠,𝑡
𝑟 (F⋆) ≔ im(𝜋𝑠+𝑡gr[−𝑠,−𝑠+𝑟) → 𝜋𝑠+𝑡gr[−𝑠−𝑟+1,−𝑠+1)). To construct the differential, we 

firstly notice that the heart of a 𝑡-structure is (the nerve of) an abelian category, thus by epi-

mono factorization we have

𝑑𝑠,𝑡
𝑟

𝜋𝑠+𝑡gr[−𝑠,−𝑠+𝑟) 𝐸𝑠,𝑡
𝑟 𝜋𝑠+𝑡gr[−𝑠−𝑟+1,−𝑠+1)

𝜋𝑠+𝑡−1gr[−𝑠+𝑟,−𝑠+2𝑟) 𝐸𝑠−𝑟,𝑡+𝑟−1
𝑟 𝜋𝑠+𝑡−1gr[−𝑠+1,−𝑠+𝑟+1)

where the outer square has homotopy boundary maps as vertical arrows and naturally 

commutes.

On the 𝐸1-page, we have

im(𝜋𝑠+𝑡gr−𝑠 ⟶
id

𝜋𝑠+𝑡gr−𝑠) = 𝐸𝑠,𝑡
1 (F⋆) (2.3.19)

and the differential coincides with the one in (2.3.2).

Lemma 2.3.11 [[Lur17], Proposition. 1.2.2.7] The 𝐸𝑟-page together with differentials in Construction 

2.3.10 is a spectral sequence.

The main theorem of this section is the following comparison theorem. In particular, this proof 

will be performed inductively and it already implies Lemma 2.3.11.

Theorem 2.3.12 [[Ant24], Lemma 4.24] For 𝑟 ≥ 1, there’s a natural isomorphism

𝐸−(𝑟−1)𝑠−𝑟𝑡,𝑟𝑠+(𝑟+1)𝑡
1 (Dec(𝑟)(F⋆)) ≅ 𝐸𝑠,𝑡

𝑟+1(F⋆) (2.3.20)

compatible with differentials, where 𝐸𝑠,𝑡
𝑟+1(F⋆) denotes Lurie’s construction.

Proof. Inductively we need to show

𝐸−𝑡,𝑠+2𝑡
𝑟 (Dec(F⋆)) ≅ 𝐸𝑠,𝑡

𝑟+1(F⋆) (2.3.21)
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We consider the following diagram arising from the functoriality of décalage, for simplicity we 

denote gr[𝑎,𝑏)
D  for gr[𝑎,𝑏)(Dec(−)) and gr[𝑎,𝑏)

F  for gr[𝑎,𝑏)F⋆ and we set 𝑠 = 0 = 𝑡.

≅

1 2 3

≅

4

5

≅

6 7

≅

8

𝜋0gr[0,𝑟+1)
F 𝜋0gr[0,∞)

D gr[0,𝑟+1)
F 𝜋0gr[0,𝑟)

D gr[0,𝑟+1)
F 𝜋0gr[0,𝑟)

D gr[0,∞)
F 𝜋0gr[0,𝑟)

D F⋆

𝐸0,0
𝑟+1(F⋆) 𝐸0,0

𝑟 (Dec(F⋆))𝐴 𝐵 𝐶

𝜋0gr[−𝑟,1)
F 𝜋0gr[−𝑟+1,∞)

D gr[−𝑟,1)
F 𝜋0gr[−𝑟+1,1)

D gr[−𝑟,1)
F 𝜋0gr[−𝑟+1,1)

D gr[−𝑟,∞)
F 𝜋0gr[−𝑟+1,1)

D F⋆

We will justify the marked morphisms separately.

1. The colimit of the fiber sequence arising from Beilinson 𝑡-structure

𝜏Б

≥0gr[0,𝑟+1)
F → gr[0,𝑟+1)

F → 𝜏Б

≤−1gr[0,𝑟+1)
F (2.3.22)

is by definition

gr[0,∞)
D gr[0,𝑟+1)

F → gr[0,𝑟+1)
F → gr(−∞,−1]

D gr[0,𝑟+1)
F (2.3.23)

Use Example 2.3.5 we see that gr(−∞,−1]
D gr[0,𝑟+1)

F  has a finite filtration with graded piece 

gr(−∞,−1]
D gr𝑠

F ≃ 𝜏≤−𝑠−1gr𝑠
F, 0 ≤ 𝑠 ≤ 𝑟 by Corollary 2.3.7. This tells us gr(−∞,−1]

D gr[0,𝑟+1)
F  is in 

𝒞︀≤−1 and thus 1 is an isomorphism.

2. Like the setting above, gr[0,∞)
D gr[0,𝑟+1)

F  has a finite filtration with graded piece gr[0,∞)
D gr𝑠

F ≃
𝜏≥−𝑠gr𝑠

F and similarly gr[0,𝑟)
D gr[0,𝑟+1)

F  is finitely filtered. The fiber sequence

gr[𝑟,∞)
D gr[0,𝑟+1)

F → gr[0,∞)
D gr[0,𝑟+1)

F → gr[0,𝑟)
D gr[0,𝑟+1)

F (2.3.24)

has a finite filtered fiber with each graded piece gr[𝑟,∞)
D gr𝑠

F ≃ 𝜏≥−𝑠+𝑟gr𝑠
F, 0 ≤ 𝑠 ≤ 𝑟. Therefore 

the fiber is connective and the map 2 under 𝜋0 is an epimorphism.

3. The fiber sequence

gr[0,𝑟)
D gr[𝑟+1,∞)

F → gr[0,𝑟)
D gr[0,∞)

F → gr[0,𝑟)
D gr[0,𝑟+1)

F (2.3.25)

has a finite filtered fiber with associated graded piece |𝜋Б
𝑠gr[𝑟+1,∞)

F [𝑠]| for 0 ≤ 𝑠 < 𝑟. The 

cochain complex 𝜋Б
𝑠gr[𝑟+1,∞)

F  is of the form

… → 0 → 𝜋−𝑟−1+𝑠gr𝑟+1
F → 𝜋−𝑟−1+𝑠−1gr𝑟+2

F → … (2.3.26)

with 𝜋−𝑟−1+𝑠gr𝑟+1
F  put on the cohomological degree 𝑟 + 1. Now as 𝑠 < 𝑟 + 1, 𝐻𝑠 = 0 and by 

Lemma 2.2.6,

𝜋−𝑎|𝜋Б
𝑠gr[𝑟+1,∞)

F [𝑠]| ≅ 𝐻𝑎+𝑠(𝜋Б
𝑠gr[𝑟+1,∞)

F ) = 0 (2.3.27)

for 𝑎 < 𝑟 + 1 − 𝑠. In particular, 𝜋1 = 0, hence the fiber is 1-connective and 3 is an isomor

phism.

4. The cofiber sequence

gr[0,𝑟)
D gr[0,∞)

F → gr[0,𝑟)
D F⋆ → gr[0,𝑟)

D gr(−∞,−1]
F (2.3.28)

has a connective cofiber by the same nature of 3. Again by Lemma 2.2.6,
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𝜋−𝑎|𝜋Б
𝑠gr(−∞,−1]

F [𝑠]| ≅ 𝐻𝑎+𝑠(𝜋Б
𝑠gr(−∞,−1]

F ) = 0 (2.3.29)

for 𝑎 > −1 − 𝑠. In particular 𝜋0 = 0 and 4 is an epimorphism.

5. Same as in case of 1, but as gr(−∞,−𝑟]
D gr𝑠

F ≃ 𝜏≤−𝑠−𝑟gr𝑠
F, −𝑟 ≤ 𝑠 ≤ 0, we conclude that 

gr(−∞,−𝑟]
D gr[−𝑟,1)

F  is in 𝒞︀≤0 and 5 is a monomorphism.

6. Same as in case of 2, the fiber is however 1-connective and 6 must be an isomorphism.

7. Repeat the arguments in 3, we have the fiber sequence

gr[−𝑟+1,1)
D gr[1,∞)

𝐹 → gr[−𝑟+1,1)
D gr[−𝑟,∞)

F → gr[−𝑟+1,1)
D gr[−𝑟,1)

F (2.3.30)

and the fiber has trivial 𝜋0 hence the map 7 is a monomorphism.

8. As in 4, the cofiber of

gr[−𝑟+1,1)
D gr[−𝑟,∞)

F → gr[−𝑟+1,1)
D F⋆ → gr[−𝑟+1,1)

D gr(−∞,−𝑟−1]
F (2.3.31)

is 1-connective and 8 is an isomorphism.

Thus by standard arguments we have a chain of isomorphisms

𝐸0,0
𝑟+1(F⋆) ← 𝐴 → 𝐵 ← 𝐶 → 𝐸0,0

𝑟 (Dec(F⋆)) (2.3.32)

It remains to show this isomorphism is compatible with differentials staring from (0, 0). For 

this, we firstly consider the following commutative diagram raising from fiber and cofiber 

sequences

id id
gr[𝑟+1,2𝑟+2)

F gr[𝑟,∞)
D gr[𝑟+1,2𝑟+2)

F gr[𝑟,2𝑟)
D gr[𝑟+1,2𝑟+2)

F gr[𝑟,2𝑟)
D gr[𝑟+1,∞)

F gr[𝑟,2𝑟)
D F⋆

gr[𝑟+1,2𝑟+2)
F gr[0,∞)

D gr[𝑟+1,2𝑟+2)
F 𝐴 gr[𝑟,2𝑟)

D gr[0,∞)
F gr[𝑟,2𝑟)

D F⋆

gr[0,2𝑟+2)
F gr[0,∞)

D gr[0,2𝑟+2)
F gr[0,2𝑟)

D gr[0,2𝑟+2)
F gr[0,2𝑟)

D gr[0,∞)
F gr[0,2𝑟)

D F⋆

gr[0,𝑟+1)
F gr[0,∞)

D gr[0,𝑟+1)
F gr[0,𝑟)

D gr[0,𝑟+1)
F gr[0,𝑟)

D gr[0,∞)
F gr[0,𝑟)

D F⋆

𝐴 exists since the lower 3 × 5-diagram has exact columns and is set to be the cofiber. The map 

gr[𝑟,2𝑟)
D gr[𝑟+1,2𝑟+2)

F → 𝐴 exists since the composition

gr[𝑟,2𝑟)
D gr[𝑟+1,2𝑟+2)

F → gr[0,2𝑟)
D gr[0,2𝑟+2)

F → gr[0,𝑟)
D gr[0,𝑟+1)

F (2.3.33)

is nullhomotopic. Now using the long homotopy sequence and the commutativity of this 

diagram we obtain the following diagram:

𝑑 𝑑

≅ ≅

≅ ≅

𝛽

id 𝛼 ≅ id

𝜋0gr[0,𝑟+1)
F 𝜋0gr[0,∞)

D gr[0,𝑟+1)
F 𝜋0gr[0,𝑟)

D gr[0,𝑟+1)
F 𝜋0gr[0,𝑟)

D gr[0,∞)
F 𝜋0gr[0,𝑟)

D F⋆

𝐸0,0
𝑟+1(F⋆) 𝐸0,0

𝑟 (Dec(F⋆))

𝜋−1gr[𝑟+1,2𝑟+2)
F 𝜋−1gr[0,∞)

D gr[𝑟+1,2𝑟+2)
F 𝜋−1𝐴 𝜋−1gr[𝑟,2𝑟)

D gr[0,∞)
F 𝜋−1gr[𝑟,2𝑟)

D F⋆

𝐸−𝑟−1,𝑟
𝑟+1 (F⋆) 𝐸−𝑟,𝑟−1

𝑟 (Dec(F⋆))

𝜋−1gr[𝑟+1,2𝑟+2)
F 𝜋−1gr[𝑟,∞)

D gr[𝑟+1,2𝑟+2)
F 𝜋−1gr[𝑟,2𝑟)

D gr[𝑟+1,2𝑟+2)
F 𝜋−1gr[𝑟,2𝑟)

D gr[𝑟+1,∞)
F 𝜋−1gr[𝑟,2𝑟)

D F⋆
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where the middle 3 × 5-diagram and two side-trapezoids commute.

We claim the map 𝛼 is an isomorphism and 𝛽 is a monomorphism.

For 𝛼, we can argue it as of the map 2 above, the cofiber sequence

gr[𝑟,∞)
D gr[𝑟+1,2𝑟+2)

F → gr[0,∞)
D gr[𝑟+1,2𝑟+2)

F → gr[0,𝑟)
D gr[𝑟+1,2𝑟+2)

F (2.3.34)

has a finitely filtered cofiber with graded piece |𝜋Б
𝑠gr[𝑟+1,2𝑟+2)

F [𝑠]| for 0 ≤ 𝑠 < 𝑟. Using Lemma 

2.2.6, we see 𝜋𝑎 = 0 for 𝑎 ≥ −2 and thus 𝛼 is an isomorphism.

For 𝛽, note that the map fits into the following commutative diagram:

𝜋0gr[0,2𝑟)
D gr[0,∞)

F 𝜋0gr[0,𝑟)
D gr[0,∞)

F 𝜋−1gr[𝑟,2𝑟)
D gr[0,∞)

F 𝜋−1gr[0,2𝑟)
D gr[0,∞)

F

𝜋0gr[0,2𝑟)
D gr[0,2𝑟+2)

F 𝜋0gr[0,𝑟)
D gr[0,𝑟+1)

F 𝜋−1𝐴 𝜋−1gr[0,2𝑟)
D gr[0,2𝑟+2)

F

The same arguments as in 3 show that the left two and the right maps are isomorphisms and 

this makes 𝛽 injective.

Now we do some diagram chasing: start from 𝜋0gr[0,∞)
D gr[0,𝑟+1)

F , the left big trapezoid commutes 

by assumption and it would be enough to show the following sub-diagram commutes:

≅

𝑑

𝜋0gr[0,∞)
D gr[0,𝑟+1)

F 𝜋0gr[0,𝑟)
D F⋆

𝐸0,0
𝑟 (Dec(F⋆))

𝐸−𝑟,𝑟−1
𝑟 (Dec(F⋆))

𝜋−1gr[0,∞)
D gr[𝑟+1,2𝑟+2)

F

𝜋−1gr[𝑟,∞)
D gr[𝑟+1,2𝑟+2)

F 𝜋−1gr[𝑟,2𝑟)
D F⋆

Indeed, this is reduced to show the commutativity of paths from 𝜋0gr[0,∞)
D gr[0,𝑟+1)

F  to 

𝜋−1gr[𝑟,2𝑟)
D gr[0,∞)

F  going top and bottom rows respectively, and this is true by the injectivity of 

the map 𝛽. □
We will return to this isomorphism in Chapter 5.

3 The stable motivic category

In 1980s, when trying to understand slices of algebraic 𝐾-theory, Beilinson and Lichtenbaum 

conjectured the existence of motivic cohomology, aiming to give an analogue of singular 

cohomology for algebraic varieties. Later in 1990s, Voevodsky and Morel defined their motivic 

cohomology (of smooth varieties) as the cohomology theory represented by a motivic version 

of Eilenberg-MacLane spectrum in the stable motivic category 𝒮︀ℋ︀(𝑘), where 𝑘 is a perfect field 

of characteristic zero.

Generally speaking, motivic homotopy theory is the homotopy theory of smooth schemes 

where 𝔸1 is the interval object. We first study unstable motivic homotopy theory, whose objects 

are the so-called motivic spaces, a reasonable analogue of smooth manifolds. Then we will 
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introduce the stable motivic category following the language in [Rob15]. We discuss also the 

homotopy sheaves of these motivic spectra and pay a special attention to connectivity of them.

We fix a quasi-compact quasi-separated base scheme 𝑆 over a base field 𝑘 in this chapter.

3.1 Motivic space

Let 𝒮︀m𝑆  be the category of smooth schemes of finite type over 𝑆. Let 𝒫︀(𝒮︀m𝑆) = Fun(𝒮︀mop
𝑆 , An) 

be the category of presheaves of animae. Because of Yoneda lemma, the category 𝒮︀m𝑆  embeds 

into it. We shall install a topology on 𝒮︀m𝑆 .

Definition 3.1.1 The Nisnevich topology on 𝒮︀m𝑆  is the Grothendieck topology generated by 

Nisnevich coverings, i.e. those finite families {𝑝𝑖 : 𝑈𝑖 → 𝑋} such that each 𝑝𝑖 is an étale map 

and for any field 𝑘′, the map Spec 𝑘′ → 𝑋 lifts to one of covering maps.

The Nisnevich site has an easier characterization by Nisnevich squares.

Definition 3.1.2 A pullback square in 𝒮︀m𝑆

𝑝
𝑖

𝑈 ×𝑋 𝑉 𝑉

𝑈 𝑋
is called an elementary distinguished square, or simply Nisnevich square, if 𝑝 is an étale map 

and 𝑖 is an open immersion, and 𝑝−1(𝑋 − 𝑖(𝑈)) → 𝑋 − 𝑖(𝑈) is an isomorphism with respect to 

reduced scheme structures.

We shall mainly focus on sheaves on a Nisnevich site later, therefore it is convenient to have a 

sheaf condition for a presheaf ℱ︀ ∈ 𝒫︀(𝒮︀m𝑆).

Definition 3.1.3

1. Let ℱ︀ be a presheaf on 𝒮︀m𝑆 , where 𝑆 is a quasi-compact quasi-separated scheme. ℱ︀ is said 

to have Nisnevich excision if ℱ︀(∅) ≃ ∗ and for any Nisnevich square {𝑈 → 𝑋, 𝑉 → 𝑋} in 

𝒮︀m𝑆 , the induced square

ℱ︀(𝑋) ℱ︀(𝑈)

ℱ︀(𝑉 ) ℱ︀(𝑈 ×𝑋 𝑉 )
is a pullback square in An.

2. ℱ︀ is said to fulfill Nisnevich (Čech) descent if for each Nisnevich covering 𝒰︀ of 𝑋, the map

lim Map𝒫︀(𝒮︀m𝑆)(Č(𝒰︀), ℱ︀) → ℱ︀(𝑋) (3.1.1)

is an equivalence.
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Theorem 3.1.4 Let 𝑆 be a quasi-compact quasi-separated scheme and ℱ︀ ∈ 𝒫︀(𝒮︀m𝑆), then the followings 

are equivalent:

1. ℱ︀ has Nisnevich excision.

2. ℱ︀ fulfills Nisnevich descent.

If one of the conditions is fulfilled, then we say ℱ︀ is a Nisnevich sheaf.

Sketch of proof. We will use the fact that Nisnevich topology over 𝒮︀m𝑆  is hypercomplete (cf. 

[[CM21], Corollary 3.27]), therefore, any Nisnevich descent is also a hyperdescent.

Next, we observe that the Nisnevich squares generate Nisnevich topology, this is [[MV99], 

§3 ,Proposition 1.4].

Pick a Nisnevich square 𝒰︀ = {𝑈 → 𝑋, 𝑉 → 𝑋} and let 𝑐 : Č(𝒰︀) → 𝑋 be its Čech nerve. Let 

𝑊 ≔ 𝑈 ×𝑋 𝑉  and 𝑋′ be the pushout of 𝑈 ← 𝑊 → 𝑉  and 𝑘 : 𝑋′ → 𝑋 be the canonical map.

By definition, ℱ︀ satisfies Nisnevich excision if and only if ℱ︀(𝑘) is an equivalence and ℱ︀(∅) ≃
∗. And by [[AHW17], Lemma 3.1.3] ℱ︀ satisfies Nisnevich descent if ℱ︀(𝑐) is an equivalence and 

ℱ︀(∅) ≃ ∗. If we write

𝒞︀ = {𝑐 : Č(𝒰︀) → 𝑋} ∪ {𝑒}

𝒦︀ = {𝑘 : 𝑋′ → 𝑋} ∪ {𝑒}
(3.1.2)

where 𝑒 is the canonical map from empty sheaf to the sheaf represented by the initial object in 

𝒮︀m𝑆 . Then it suffices to show every map in 𝒞︀ is a 𝒦︀-equivalence and every map in 𝒦︀ is a 𝒞︀
-equivalence. This is shown in [[AHW17], Theorem 3.2.5]. See also [[Lur18], Theorem 3.7.5.1] 

for a derived algebraic geometry version. □
Write Shv(𝒮︀m𝑆) for the ∞-category of Nisnevich sheaves of animae. The unstable motivic 

category is a certain localization of it.

Definition 3.1.5 The unstable motivic category ℋ︀(𝑆) is the localization of Shv(𝒮︀m𝑆) under 

the collection of morphisms 𝑊 ≔ {𝑋 × 𝔸1
𝑆 → 𝑋} for any 𝑋 ∈ 𝒮︀m𝑆  in the sense of Definition 

6.1.22. We denote ℋ︀(𝑆)∗ to be the category of minimal pointed motivic spaces as constructed 

in Remark 6.2.2.

Remark 3.1.6 Thanks to Theorem 3.1.4, we can also exhibit ℋ︀(𝑆) as a localization of 𝒫︀(𝒮︀m𝑆) 
under the following morphisms:

1. (𝔸1-invariance) 𝑋 × 𝔸1
𝑆 → 𝑋;

2. よ(𝑈) ∐
よ(𝑈×𝑋𝑉 )よ(𝑉 ) →よ(𝑋) for any Nisnevich square {𝑈 → 𝑋, 𝑉 → 𝑋};

3. the unique map ∅ →よ(∅).
where よ : 𝒮︀m𝑆 → 𝒫︀(𝒮︀m𝑆) is the Yoneda embedding functor. This gives us a localization 

functor 𝐿mot : 𝒫︀(𝒮︀m𝑆) → ℋ︀(𝑆).
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Theorem 3.1.7 There is a closed symmetric monoidal structure on ℋ︀(𝑆)∗ given by the localization of 

the section-wise smash product.

Proof. By Proposition 6.4.5 we need to check firstly ℋ︀(𝑆)∗ has finite products, thus the Cartesian 

product induces a symmetric monoidal structure on ℋ︀(𝑆)∗ via the smash product. But it is just 

the fact that 𝔸1-invariance is preserved by products (and colimits).

Now for closeness. In order to show the product is a left adjoint, we invoke Theorem 6.5.8 

(notice ℋ︀(𝑆)∗ is presentable as an accessible localization) and show it preserves small colimits. 

Let 𝑙 : Shv(𝒮︀m𝑆)∗ → ℋ︀(𝑆)∗ be the localization functor with 𝜄 : ℋ︀(𝑆)∗ → Shv(𝒮︀m𝑆)∗ the right 

adjoint, using 𝑙 ∘ 𝜄 ≃ id we calculate

(colim𝑖ℱ︀𝑖) ⊗ 𝒢︀ ≃ (colim𝑖(𝑙𝜄ℱ︀𝑖)) ⊗ (𝑙𝜄𝒢︀)

≃ 𝑙((colim𝑖𝜄ℱ︀𝑖) ⊗ 𝜄𝒢︀)

≃ 𝑙(colim𝑖(𝜄ℱ︀𝑖 ⊗ 𝜄𝒢︀))

≃ colim𝑖(𝑙𝜄(ℱ︀𝒾︀ ⊗ 𝒢︀)) ≅ colim𝑖(ℱ︀𝑖 ⊗ 𝒢︀).

(3.1.3)

□

3.2 ℙ1-invariance and stabilization

Just like motivic spaces resemble the classical homotopy category of spaces, the stable motivic 

category is a generalization of spectra. In order to define the stabilization of ℋ︀(𝑆)∗, we need 

to understand the suspension functor first.

Proposition 3.2.1 Viewing each space 𝑋 ∈ An as a constant sheaf, the suspension functor in ℋ︀(𝑆)∗ 

is given by smash product with 𝕊1.

Proof. By Theorem 3.1.7 the unit of the symmetric monoidal product is the constant sheaf 𝕊0 =
∗ ∐ ∗, the definition of suspension functor tells us all. □
By general theory in §6.3, we define:

Definition 3.2.2 The ∞-category 𝒮︀ℋ︀𝒮︀1(𝑆) is defined as the stabilization of ℋ︀(𝑆)∗, i.e. 

Sp(ℋ︀(𝑆)∗). The objects in this category are called the 𝒮︀1-motivic spectra.

Instead of using the direct analog 𝒮︀ℋ︀𝒮︀1(𝑆) of 𝒮︀ℋ︀, we would like to invert another important 

circle in algebraic geometry, namely the Tate circle 𝔾𝑚 = Spec 𝑘[𝑡, 𝑡−1]. We note that 𝕊1 ∧ 𝔾𝑚 ≃
ℙ1. Indeed, as 𝑝 : 𝔸1 → ℙ1, 𝑥 ↦ (1 : 𝑥) and 𝑖 : 𝔸1 → ℙ1, 𝑥 ↦ (𝑥 : 1) is a Nisnevich covering of 

ℙ1, and there intersection is 𝔾𝑚.

Proposition 3.2.3 (Voevodsky) Let 𝒞︀ be a symmetric monoidal ∞-category and 𝑋 ∈ 𝒞︀. The stabiliza

tion Stab𝑋(𝒞︀) is the colimit of the sequence
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𝒞︀ ⟶⟶⟶⟶⟶⟶
𝑋⊗−

𝒞︀ ⟶⟶⟶⟶
𝑋⊗

𝒞︀ ⟶⟶⟶⟶
𝑋⊗

… (3.2.1)

If the action of cyclic permutation on 𝑋 ⊗ 𝑋 ⊗ 𝑋 becomes an identity map in Stab𝑋(𝒞︀), then 

Stab𝑋(𝒞︀) has a canonical symmetric monoidal structure and the functor 𝒞︀ → Stab𝑋(𝒞︀) sending 𝑋 to 

an invertible object is monoidal.

Proof: see [[Rob15], Proposition 2.19]. □

Lemma 3.2.4 In ℋ︀(𝑆)∗ the 3-cycle map 𝜎 : ℙ1 ∧ ℙ1 ∧ ℙ1 → ℙ1 ∧ ℙ1 ∧ ℙ1 is homotopic to identity, 

i.e. ℙ1 is symmetric in ℋ︀(𝑆)∗.

Proof. It suffices to show a transposition on ℙ1 ∧ ℙ1 is homotopic to − id, then we can use the 

fact that a 3-cycle in 𝑆3 is a composition of 2 transpositions.

Consider the SL2(ℤ) action on ℙ1 ∧ ℙ1 and we see the two matrices are 𝔸1-homotopic:

(0
1

1
0) ≃ (−1

0
0
1) (3.2.2)

since they can be related with elementary transformations. Indeed, consider the matrix

𝐴 = ( 0
−1

1
0) = (0

1
1
0)(−1

0
0
1) (3.2.3)

and we have

(0
1

1
0)𝐴 = (−1

0
0
1). (3.2.4)

Thus for a transposition 𝜏  we have: 𝜏 ≃ − id ∧ id ≃ − id. □

Definition 3.2.5 The stable motivic category 𝒮︀ℋ︀(𝑆) is the colimit of the following sequence:

ℋ︀(𝑆)∗ ⟶⟶⟶⟶⟶⟶
ℙ1∧−

ℋ︀(𝑆)∗ ⟶⟶⟶⟶⟶⟶
ℙ1∧−

ℋ︀(𝑆)∗ ⟶⟶⟶⟶⟶⟶
ℙ1∧−

… (3.2.5)

together with a symmetric monoidal functor Σ∞
ℙ1 : ℋ︀(𝑆)∗ → 𝒮︀ℋ︀(𝑆) which sends ℙ1 to an 

invertible object. Moreover, 𝒮︀ℋ︀(𝑆) carries a canonical symmetric monoidal structure.

Remark 3.2.6 As ℋ︀(𝑆)∗ is presentable, the functor Σ∞
ℙ1  preserves all small colimits, so by 

Theorem 6.5.8 there is a right adjoint Ω∞
ℙ1  which preserves all small limits.

In order to give a reasonable definition of “inverting ℙ1”, we need to use the construction 

given in [[Rob15], §2.1], which not only proves the stability of resulting category but is also 

accompanied with a nice universal property to work with.

For every small symmetric monoidal ∞-category 𝒞︀, we shall denote CAlg𝒞︀ the category of 

small symmetric monoidal ∞-categories 𝒟︀ with a monoidal structure map 𝒞︀ → 𝒟︀. We have 

a full subcategory spanned by those 𝒟︀’s whose structure map sends 𝑋 ∈ 𝒞︀ to an invertible 
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object, written as CAlg𝑋
𝒞︀ . By [[Rob15], Proposition 2.1], there is a left adjoint of the inclusion 

CAlg𝑋
𝒞︀ ↪︎ CAlg𝒞︀, written as ℒ︀𝒞︀,𝑋

Definition 3.2.7 [[Rob15], Definition 2.6] Let 𝒞︀ be a presentable symmetric monoidal ∞-

category and let 𝑋 ∈ 𝒞︀. The formal inversion of 𝑋 in 𝒞︀ is the presentable symmetric monoidal 

∞-category 𝒞︀[𝑋−1] defined by the pushout

𝒞︀[𝑋−1] = 𝒞︀ ∐
𝒫︀(free⊗(Δ[0]))

𝒫︀(ℒ︀free⊗(Δ[0]),∗(free⊗(Δ[0])))) (3.2.6)

in CAlg(Pr𝐿), where free⊗(Δ[0]) is the free symmetric monoidal category generated by ∗ and 

we interpret the monoidal map free⊗(Δ[0]) → 𝒞︀ to be the object 𝑋 ∈ 𝒞︀.

Note by [[Rob15], Proposition 2.9], the formal inversion is canonically equivalent to the cate

gory ℒ︀Pr
𝒞︀,𝑋(𝒞︀), where ℒ︀Pr

𝒞︀,𝑋 is the restriction of ℒ︀𝒞︀,𝑋 onto CAlg(Pr𝐿), making it initial among 

all presentable symmetric monoidal ∞-categories such that 𝑋 is invertible. This suggests an 

equivalence of this formal inversion with the more familiar notation of stabilization.

Since the tensor product in Pr𝐿 preserves all small colimits by [[Lur17], Proposition 4.8.1.17], 

the canonical map 𝒞︀ → 𝒞︀[𝑋−1] produces a forgetful functor Mod𝒞︀[𝑋−1](Pr𝐿) → Mod𝒞︀(Pr𝐿) 

and the base change functor ℒ︀Pr
𝒞︀,𝑋 ≔ (− ⊗𝒞︀ 𝒞︀[𝑋−1]). This base change functor is monoidal, left 

adjoint to CAlg𝒞︀[𝑋−1](Pr𝐿) → CAlg𝒞︀(Pr𝐿). We have an adjunction pair

𝐹 : CAlg𝒞︀[𝑋−1](Pr𝐿) ⇆ CAlg𝒞︀(Pr𝐿) : ℒ︀Pr
𝒞︀,𝑋. (3.2.7)

Theorem 3.2.8 [[Rob15], Corollary 2.22] Let 𝒞︀ be a presentable symmetric monoidal ∞-category and 

let 𝑋 be a symmetric object in 𝒞︀. The map of 𝒞︀-modules

ℒ︀Pr
𝒞︀,𝑋(𝑀) → ℒ︀Pr

𝒞︀,𝑋(Stab𝑋(𝑀)) → Stab𝑋(𝑀) (3.2.8)

induced by adjunction (3.2.7) is an equivalence. In particular, the (underlying ∞-category of) formal 

inversion 𝒞︀[𝑋−1] is equivalent to Stab𝑋(𝒞︀).

Corollary 3.2.9 The stable motivic category 𝒮︀ℋ︀(𝑆) is indeed stable.

Remark 3.2.10 There is also an adjunction pair of suspension and desuspension between 

𝒮︀ℋ︀𝕊1(𝑆) and 𝒮︀ℋ︀(𝑆). In fact, by using the same technique as in Definition 3.2.7 we see that 

𝒮︀ℋ︀(𝑆) ≃ 𝒮︀ℋ︀𝕊1(𝑆)[𝔾−1
𝑚 ], see for example [[ABH24], 2.2.3].

Finally we have the following universal property of 𝒮︀ℋ︀(𝑆):

Proposition 3.2.11 [[Rob15], Corollary 2.39] Let 𝒞︀ be a pointed presentable symmetric monoidal ∞-

category, the composition with stabilization

Fun⊗,𝐿(𝒮︀ℋ︀(𝑆), 𝒞︀) → Fun⊗(ℋ︀(𝑆)∗, 𝒞︀), 𝐹 ↦ 𝐹 ∘ Σ∞
ℙ1 (3.2.9)
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is fully faithful with essential image consisting of those symmetric monoidal functors 𝐹 : ℋ︀(𝑆)∗ → 𝒞︀ 

which are ℙ1-stable, i.e. the homotopy cofiber of 𝐹(𝑆) → 𝐹(ℙ1) induced from 𝑆 →
∞

ℙ1 is ⊗-invertible.

Remark 3.2.12 Many arithmetic cohomology theories turn out to be not 𝔸𝟙-invariant, therefore, 

the condition 𝔸1-invariance in motivic homotopy theory is too strong for this context. In fact, 

if we take the same formal inversion procedure on the ∞-topos 𝒮︀t∗, the resulted ∞-category 

is a reasonable generalization of motivic spectra as by [AHI25]. We also note that in this case, 

the first construction as in Proposition 3.2.3 does not work any more, hence computations are 

more difficult.

The analogue of homotopy groups of spectra are homotopy sheaves.

Definition 3.2.13 Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆), we shall denote 𝕊𝑖,𝑗 ≔ (𝕊1)∧𝑖−𝑗 ∧ 𝔾∧𝑗
𝑚  to be the motivic (𝑖, 𝑗)

-sphere. The (𝑖, 𝑗)-th homotopy sheaf 𝜋𝑖,𝑗(𝐸) of 𝐸 is the sheafification of the presheaf

𝑋 ∈ 𝒮︀m𝑆 ↦ [Σ∞
ℙ1𝑋+, 𝐸 ∧ 𝕊−𝑖,−𝑗]

𝒮︀ℋ︀(𝑆)
(3.2.10)

where [𝑋, 𝑌 ] is the 0-th truncation of the mapping space, i.e. the set of morphisms in the 

homotopy category.

Definition 3.2.14 For 𝐸, 𝐹 ∈ 𝒮︀ℋ︀(𝑆) and 𝑋 ∈ 𝒮︀m𝑆 , we define

1. the 𝐸-cohomology of 𝑋 as

𝐸𝑝,𝑞(𝑋) ≔ [Σ∞
ℙ1𝑋+, 𝐸 ∧ 𝕊𝑝,𝑞]

𝒮︀ℋ︀(𝑆)
(3.2.11)

2. and the 𝐸-cohomology of 𝐹  as

𝐸𝑝,𝑞(𝐹) ≔ [𝐹 , 𝐸 ∧ 𝕊𝑝,𝑞]𝒮︀ℋ︀(𝑆). (3.2.12)

3. Dually we can define the 𝐸-homology of 𝐹  as

𝐸𝑝,𝑞(𝐹) ≔ [𝐸 ∧ 𝕊−𝑝,−𝑞, 𝐹 ]𝒮︀ℋ︀(𝑆). (3.2.13)

3.3 𝔸1-connectivity theorem

Morel’s stable 𝔸1-connectivity theorem [[Mor05], Theorem 6.1.8] serves as a useful tool for 

determining homotopy sheaves of a spectrum. It is later essentially used for showing equiva

lences of effective covers and slices of spectra, for example, Corollary 4.4.2.

Morel established the theorem over a perfect base field. This was later generalized under a 

series of papers, to a Noetherian scheme of finite dimension by [Dru22] and to a qcqs scheme 

of finite valuative dimension by [BK25].

For our purpose we only need the theorem for a base field 𝑘. We then give a proof here following 

the strategy in [Ayo21] and [BM23], after some preliminary definitions. In this section we fix a 

base field 𝑘.
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Definition 3.3.1 Let 𝜏  be a Grothendieck topology on 𝒮︀m𝑘, let ℱ︀ ∈ 𝒫︀(𝒮︀m𝑘)∗ be a pointed 

presheaf. ℱ︀ is said to be locally 𝑛-connected (with respect to 𝜏 ) if the 𝜏 -sheafification of 𝜋𝑖ℱ︀, 

i.e., of 𝑈 ↦ 𝜋𝑗ℱ︀(𝑈) is trivial for any 𝑗 ≤ 𝑛.

Unless otherwise stated, locally 𝑛-connected always means locally 𝑛-connected with respect to 

the Nisnevich topology. We state the main theorem of this section.

Theorem 3.3.2

1. (Unstable 𝔸1-connectivity) Suppose ℱ︀ ∈ 𝒫︀(𝒮︀m𝑘)∗ is locally 𝑛-connected, then so is the motivic 

localization of ℱ︀ in ℋ︀(𝑘)∗.

2. (Stable 𝔸1-connectivity) Suppose ℱ︀ ∈ 𝒫︀(𝒮︀m𝑘)∗ is locally 𝑛-connected, then so is the motivic 

spectrum Σ∞
ℙ1(𝐿motℱ︀) ∈ 𝒮︀ℋ︀(𝑘).

Notice the stable connectivity theorem follows from the unstable one immediately by how 

we defined the homotopy sheaf of a spectrum in Definition 3.2.13 (see also [[Dru22], §2.1]). 

Therefore, we only prove the unstable one.

There are two technical definitions of connectivity that are used in the proof.

Definition 3.3.3 Let ℱ︀ ∈ 𝒫︀(𝒮︀m𝑘)∗ be a pointed presheaf.

1. ℱ︀ is said to be generically 𝑛-connected if for any connected 𝑋 ∈ 𝒮︀m𝑘 with generic point 𝜂𝑋, 

𝜋𝑗ℱ︀(𝜂𝑋) = 0 for any 𝑗 ≤ 𝑛.

2. ℱ︀ is said to be 𝑛-preconnected if for any local essentially smooth scheme 𝑋 over 𝑘 with 

dimension dim 𝑋 = 𝑚, 𝜋𝑗ℱ︀(𝑋ℎ) = 0 for any 𝑗 ≤ 𝑛 − 𝑚, where 𝑋ℎ is the henselization of 𝑋.

If ℱ︀ is locally 𝑛-connected, then ℱ︀ is 𝑛-preconnected. And the definition of preconnectedness is 

a Nisnevich local condition, therefore a presheaf is 𝑛-preconnected if and only if its Nisnevich 

sheafification is.

Lemma 3.3.4 Let ℱ︀ ∈ Shv(𝒮︀m𝑘)∗ be a Nisnevich sheaf. If ℱ︀ is 𝑛-preconnected, then for any essentially 

smooth 𝑘-scheme 𝑋 of dimension 𝑑, 𝜋𝑗ℱ︀(𝑋) = 0 for any 𝑗 ≤ 𝑛 − 𝑑.

Proof. For every point 𝑥 ∈ 𝑋, we have dim {𝑥} ≤ 𝑑 − dim(𝑋𝑥). The statement now follows from 

[[CM21], Theorem 3.30]. □

Theorem 3.3.5 [[Ayo21], Théorème 4.12] If 𝐹 ∈ 𝒫︀(𝒮︀m𝑘)∗ is 𝑛-preconnected, then so is its motivic 

localization.

Proof. Write Sing𝔸1(ℱ︀) ≔ |ℱ︀(− × Δ∙)| the singular construction as in [[MV99], §2.3], then by 

[[AE16], Theorem 4.27], the motivic localization 𝐿mot is the countable iteration (𝑎NisSing𝔸1)
∘ℕ

. 

It suffices to check Sing𝔸1
 preserves preconnectedness. Now for a Nisnevich sheaf ℱ︀ and 𝑋 an 

essentially smooth scheme of dimension 𝑑, Lemma 3.3.4 implies that 𝜋𝑗ℱ︀(𝑋 × Δ𝑚) = 0 for any 
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𝑗 ≤ 𝑛 − 𝑚 − 𝑑. Now we can conclude using the Bousfield-Kan spectral sequence associated to 

the the tower

… → ℱ︀(𝑋 × Δ𝑚) → ℱ︀(𝑋 × Δ𝑚+1) → … (3.3.1)

□
Proof of Theorem 3.3.2. As ℱ︀ is locally 𝑛-connected, ℱ︀ is 𝑛-preconnected. Theorem 3.3.5 indicates 

that the motivic localization 𝐿motℱ︀ is also 𝑛-preconnected. Since preconnectedness implies 

generically connectedness (a generic point has always dimension 0), we know 𝐿motℱ︀ is gener

ically 𝑛-connected.

Now we can check the vanishing condition Zariski-locally for 𝑥 ∈ 𝑋. Inspect the definition, 

we can assume 𝑋 is local, connected with generic point 𝜂𝑋. We use the Bloch-Ogus-Gabber 

theorem for effaceablity [[CHK97], Theorem 5.1.10], this gives us

ker(𝜋𝑖(𝐿motℱ︀(𝑋)) → 𝜋𝑖(𝐿motℱ︀(𝜂𝑋))) = 0 (3.3.2)

for any 𝑖 ≤ 𝑛. Indeed, the assumption SUB1 and SUB2 for 𝐿motℱ︀ before the statement of this 

theorem is fulfilled, as we can see that the commutative diagram

𝑗𝑋 ∞

𝜋𝑋

𝔸1
𝑋 ℙ1

𝑋 𝑋

𝑋
induces an 𝔸1-homotopy of maps 𝑗∗

𝑋 and (∞ ∘ 𝜋𝑋)∗ from 𝐿motℱ︀(ℙ1
𝑋) to 𝐿motℱ︀(𝔸1

𝑋).

Now, since 𝐿motℱ︀ is generically 𝑛-connected, we have 𝜋𝑖(𝐿motℱ︀(𝜂𝑋)) = 0 for 𝑖 ≤ 𝑛, hence 

𝜋𝑖(𝐿motℱ︀(Spec 𝒪︀𝑋,𝑥)) = 0 for all 𝑥, this proves the theorem. □
As an application, we can define a notion of connectivity of motivic spectra, and show this 

defines a 𝑡-structure on 𝒮︀ℋ︀(𝑆).

Definition 3.3.6 The homotopy 𝑡-structure on 𝒮︀ℋ︀(𝑆) is given by

𝒮︀ℋ︀(𝑆)≥0 = {𝐸 ∈ 𝒮︀ℋ︀(𝑆) : 𝜋𝑖,𝑗(𝐸) = 0, ∀𝑖 − 𝑗 < 0}

𝒮︀ℋ︀(𝑆)≤0 = {𝐸 ∈ 𝒮︀ℋ︀(𝑆) : 𝜋𝑖,𝑗(𝐸) = 0, ∀𝑖 − 𝑗 > 0}.
(3.3.3)

Theorem 3.3.7 The homotopy 𝑡-structure is indeed a 𝑡-structure. And all truncation functors are 

symmetric monoidal with respect to the smash product on 𝒮︀ℋ︀(𝑆).

Proof. Write 𝜋𝑖(𝐸)𝑗 ≔ 𝜋𝑖−𝑗,𝑗(𝐸), the definition above for 𝒮︀ℋ︀(𝑆) can be rewritten as 𝜋𝑖(𝐸)∗ =
0, ∀𝑖 < 0, which corresponds to the smashing with (𝕊1)∧𝑖. Using the adjunction in Remark 

3.2.10 we see that 𝜋𝑖(𝐸)∗ = 𝜋𝑖(Ω∞
𝔾𝑚

(𝐸 ∧ 𝕊∗,∗)). Therefore, it suffices to show that
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𝒮︀ℋ︀𝒮︀1(𝑆)≥0 = {𝐸 ∈ 𝒮︀ℋ︀𝒮︀1(𝑆) : 𝜋𝑖(𝐸) = 0, ∀𝑖 < 0}

𝒮︀ℋ︀𝒮︀1(𝑆)≤0 = {𝐸 ∈ 𝒮︀ℋ︀𝒮︀1(𝑆) : 𝜋𝑖(𝐸) = 0, ∀𝑖 > 0}
(3.3.4)

defines a 𝑡-structure on 𝒮︀ℋ︀𝒮︀1(𝑆). Now let 𝐸 be a 𝒮︀1-spectrum and 𝐸≥0 be the non-negative part 

of 𝐸 induced by the Postnikov truncation on 𝒮︀ℋ︀, therefore 𝜋𝑖(𝐸≥0) = 0, ∀𝑖 < 0. By Theorem 

3.3.2 𝐿mot(𝐸≥0) is also −1-connectedsl. Hence we have a split exact sequence in 𝒫︀(𝒮︀m𝑆, 𝒮︀ℋ︀):

𝐿mot(𝐸≥0) → 𝐸≥0 → 𝐸. (3.3.5)

Since 𝐿mot preserves finite colimits, we see that 𝐸≥0 is also in 𝒮︀ℋ︀𝒮︀1(𝑆).
We define the localization functor

𝐿 : 𝒮︀ℋ︀𝒮︀1(𝑆) → 𝒮︀ℋ︀𝒮︀1(𝑆)

𝐸 ↦ 𝐸≥0.
(3.3.6)

and since its essential image is closed under extension, by Proposition 6.2.23 it is a 𝑡-localization 

and induces a 𝑡-structure. □

3.4 Some motivic spectra

The first important spectrum is the sphere spectrum, which plays the role of unit of the 

symmetric monoidal structure on 𝒮︀ℋ︀(𝑆)⊗.

Definition 3.4.1 The motivic sphere spectrum 𝕊𝑆 ∈ 𝒮︀ℋ︀(𝑆) is given by Σ∞
ℙ1𝕊0,0, i.e. the ℙ1 

stabilization of the constant sheaf 𝕊0,0.

The stable motivic category allows us to define cohomology theories on (smooth) varieties. We 

shall consider some of them, while concentrate on the geometric nature.

One could ask whether there is an analogue of the Eilenberg-MacLane spectrum 𝐻ℤ ∈ 𝒮︀ℋ︀ in 

the motivic world, whereas

𝜋𝑖𝐻ℤ(𝑛) = {
ℤ if 𝑖 = 𝑛
0 if 𝑖 ≠ 𝑛

(3.4.1)

However, since the homotopy sheaf of a motivic spectrum is bigraded, it is impossible to 

directly construct a similar spectrum. Therefore we will define the motivic Eilenberg-MacLane 

spectrum 𝑀ℤ as the spectrum representing Voevodsky’s motivic cohomology in [Voe98].

Construction 3.4.2 Let 𝑅 be a regular 𝑘-algebra for 𝑘 a field and 𝑆 = Spec(𝑅). Let ℤtr : 𝒮︀m𝑆 →
Fun(𝒮︀mop

𝑆 , Ab) be the functor such that for 𝑋, 𝑈 ∈ 𝒮︀m𝑆 , ℤtr(𝑋)(𝑈) is the free abelian group 

generated by finite correspondences from 𝑈  to 𝑋, i.e. by those closed irreducible subsets of 

𝑈 × 𝑋 which are finite and surjective over a connected component of 𝑈 .

Let 𝐶∙ℤtr(𝑋) be the simplicial presheaf 𝑈 ↦ ℤtr(𝑋)(𝑈 × Δ∙) and 𝐶∗ℤtr(𝑋) be the associated 

chain complex of presheaves. By Dold-Kan correspondence, 𝐶∙ℤtr(𝑋) is quasi-isomorphic to 
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𝐶∗ℤtr(𝑋). By [[MVW06], Corollary 2.24] this chain complex is 𝔸1-invariant. By [[MVW06], 

Lemma 6.2] ℤtr(𝑋) is an étale sheaf and therefore also a Nisnevich sheaf. We therefore get a 

functor 𝐿 : 𝒮︀m𝑆 → ℋ︀(𝑆) by sending 𝑋 to 𝐶∙ℤtr(𝑋).
Since for every morphism 𝑓 : 𝑈 → 𝑋, the graph Γ(𝑓) is a finite correspondence, we get a map 

Γ(𝑋) : 𝑋 → 𝐿(𝑋) by Yoneda embedding. In this case, the exterior product on spaces induces 

the smash product in ℋ︀(𝑆)∗ and we have:

Σ𝕊1 : 𝕊1 ∧ 𝐿(𝕊𝑖,𝑗) ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
Γ(𝕊1)∧ id

𝐿(𝕊1) ∧ 𝐿(𝕊𝑖,𝑗) → 𝐿(𝕊𝑖+1,𝑗)

Σ𝔾𝑚
: 𝔾𝑚 ∧ 𝐿(𝕊𝑖,𝑗) ⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶

Γ(𝔾𝑚)∧ id
𝐿(𝔾𝑚) ∧ 𝐿(𝕊𝑖,𝑗) → 𝐿(𝕊𝑖+1,𝑗+1)

(3.4.2)

Definition 3.4.3

1. The motivic Eilenberg-MacLane spectrum 𝑀ℤ is Σ∞
ℙ1𝐿(𝕊2,1) ∈ 𝒮︀ℋ︀(𝑆). It can be seen as a 

(𝕊1, 𝔾𝑚)-bispectrum whose (𝑖, 𝑗)-th degree is given by 𝐿(𝕊𝑖+𝑗,𝑗).

2. The motivic cohomology of a spectrum 𝐸 ∈ 𝒮︀ℋ︀(𝑆) is given by

𝐻𝑝,𝑞(𝐸) ≔ [𝐸, 𝕊𝑝,𝑞 ∧ 𝑀ℤ]𝒮︀ℋ︀(𝑆) (3.4.3)

Remark 3.4.4 Bloch first gave a possible construction of motivic cohomology of smooth vari

eties over a field 𝑘 using a complex built from algebraic cycles in [Blo86]. Voevodsky proposed 

Construction 3.4.2 in the context of motivic homotopy theory and showed it is related to Bloch’s 

cycle complex as in [Voe04] and [Lev08].

Spitzweck constructed a ℰ︀∞-ring spectrum 𝑀ℤ ∈ 𝒮︀ℋ︀(ℤ) as in [[Spi18], Definition 4.27]. For 

any integral scheme 𝑆 with 𝑓 : 𝑆 → Spec ℤ, the ℰ︀∞-algebra 𝑀𝑆 ≔ 𝑓∗(𝑀ℤ) ∈ 𝒮︀ℋ︀(𝑆) becomes 

a module over 𝑀ℤ and is a well-behaved 𝔸1-motivic cohomology theory.

One of the key features of 𝑀ℤ is that it is the zeroth slice of the slice filtrations (s. §4.1) on 

KGL, the spectrum representing algebraic 𝐾-theory defined later. This is the approach used in 

[BEM25] to define an 𝔸1-motivic cohomology over any qcqs scheme, using Weibel’s homotopy 

𝐾-theory KH instead of K. On regular schemes, this recovers Voevodsky’s construction.

In [Bou24] a motivic cohomology theory over any qcqs scheme was constructed combining 

[BEM25] and trace methods. This theory is in general not 𝔸1-invariant, and after 𝔸1-localization 

this matches the construction in [BEM25], [Spi18] and [Voe98] as shown in [[Bou24], §6].

The following spectrum plays an important role in this thesis.

Let 𝑆 be a qcqs scheme. As usual, for a vector bundle ℰ︀ → 𝑋 over smooth scheme 𝑋 ∈ 𝒮︀m𝑆 , 

we can define the Thom space Th(ℰ︀) ≔ ℰ︀ / (ℰ︀ − 𝑋) ∈ Shv(𝒮︀m𝑆)∗ pointed at the image of ℰ︀ −
𝑋, where 𝑋 is embedded as the zero section. Suppose we have ℰ︀1 → 𝑋1 and ℰ︀2 → 𝑋2, then

Th(ℰ︀1 × ℰ︀2 → 𝑋1 × 𝑋2) = Th(ℰ︀1) ∧ Th(ℰ︀2). (3.4.4)
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Definition 3.4.5 Let

BGL𝑛 = Gr𝑛 ≔ lim
𝑘

Gr𝑛(𝔸𝑛+𝑘) (3.4.5)

be the Grassmannian of 𝑛-dimensional affine subspaces and 𝛾𝑛 the tautological bundle on it. 

The product 𝔸1 × 𝛾𝑛 → BGL𝑛 is classified by pullback of the canonical map BGL𝑛 → BGL𝑛+1 

and 𝛾𝑛+1, this induces a bundle map 𝔸1 × 𝛾𝑛 → 𝛾𝑛+1, and by (3.4.4) a structure map

Th(𝔸1) ∧ Th(𝛾𝑛) ≃ ℙ1 ∧ Th(𝛾𝑛) → Th(𝛾𝑛+1). (3.4.6)

The algebraic cobordism spectrum MGL𝑆 ∈ 𝒮︀ℋ︀(𝑆) is defined to be

MGL𝑆 ≔ colim𝑛Σ−𝑛
ℙ1 Σ∞

ℙ1Th(𝛾𝑛). (3.4.7)

Definition 3.4.6 Let 𝑆 be a regular scheme. Using the same notation as in Definition 3.4.5, we 

can define the algebraic 𝐾-theory spectrum KGL𝑆 ∈ 𝒮︀ℋ︀(𝑆) as

KGL𝑆 ≔ Σ∞
ℙ1𝐿mot(ℤ × BGL) (3.4.8)

where BGL is the sequential limit of

… ↪︎ BGL𝑛 ↪︎ BGL𝑛+1 ↪︎ … (3.4.9)

and 𝐿mot(ℤ × BGL) the motivic localization of ℤ × BGL as in Remark 3.1.6.

The structure map is given by

𝛽 : ℙ1 ∧ 𝐿mot(ℤ × BGL) → 𝐿mot(ℤ × BGL) (3.4.10)

representing the Bott element in 𝐾0(ℙ1 ∧ 𝐿mot(ℤ × BGL)).

Remark 3.4.7 The ℰ︀∞-ring structure of MGL (and KGL) will be handled later systematically 

via the construction of motivic Thom spectra. However, there’s also a base independent ℰ︀∞-

ring structure on KGL as proven in [NSØ15].

We introduce the notion of oriented spectra in 𝒮︀ℋ︀(𝑆) and show that MGL is actually universal 

among those. We first state an important theorem regarding normal bundles: the homotopy 

purity theorem.

Theorem 3.4.8 [[MV99], §3, Theorem 2.23] Suppose there is a closed embedding of smooth schemes 𝑖 :
𝑍 ↪︎ 𝑋. Let 𝑁𝑋,𝑍  be the normal bundle of 𝑍 in 𝑋, then

Σ∞
ℙ1Th(𝑁𝑋,𝑍) ≃ Σ∞

ℙ1(𝑋 / 𝑋 − 𝑖(𝑍)) (3.4.11)

Definition 3.4.9 Let (𝐸, 𝜇, 1𝐸) be a ring spectrum in 𝒮︀ℋ︀(𝑆) and 𝑖 : (ℙ1
𝑆 , ∞) → (ℙ∞

𝑆 , ∞) be the 

inclusion as pointed spaces. An orientation on 𝐸 is a class 𝑐 ∈ 𝐸2,1(ℙ∞
𝑆 ), i.e., the (2, 1)-th 𝐸

-cohomology of ℙ1, such that 𝑖∗(𝑐) = 1𝐸 , here we view 𝐸2,1(ℙ1
𝑆 ) = 𝐸0,0(𝕊𝑆). A pair (𝐸, 𝑐) is 

called an oriented spectrum.
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Note that MGL𝑆  is canonically oriented by the class

𝑥 : Σ∞
ℙ1ℙ∞

𝑆 ≃ Σ∞
ℙ1Th(𝛾1) → MGL𝑆 ∧ ℙ1

𝑆 (3.4.12)

since the restriction of this map on (ℙ1
𝑆 , ∞) is

Σ∞
ℙ1𝕊0,0 = Σ∞

ℙ1Th(𝛾0) → MGL𝑆 (3.4.13)

by homotopy purity theorem. Moreover, this orientation is universal as we can see from the 

following theorem.

Remark 3.4.10 By similar arguments KGL is also canonically oriented. But there is also an 

algebraic counterpart of real topological 𝐾-theory, just like KGL being the analogue of complex 

topological 𝐾-theory. (s. Theorem 4.4.7) This is the so called Hermitian 𝐾-theory spectrum KO 

as constructed in [Hor05] together with a motivic real Bott periodicity. Unlike KGL, KO is not 

oriented.

Theorem 3.4.11 [[NSØ09], Proposition 6.2 & Corollary 6.7] Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆) be a ring spectrum, there 

is a bijection of ring spectra maps 𝜑 : MGL𝑆 → 𝐸 and orientations on 𝐸, given by 𝜑 ↦ 𝜑∗(𝑥MGL).

One last motivic spectrum needed to state our main theorems is the motivic Brown-Peterson 

spectrum constructed in [Vez01].

Fix a prime ℓ and let MGL(ℓ) be the Bousfield localization of MGL at ℓ and 𝐿 : MGL → MGL(ℓ) 

the localization map. We have an induced isomorphism

𝐿∗ : MGL∗,∗
(ℓ)(MGL(ℓ)) → MGL∗,∗

(ℓ)(MGL) (3.4.14)

by [[Lur10], Lecture 20, Example 4]. Let 𝑥MGL be the canonical orientation of MGL, then MGL(ℓ) 

is oriented by 𝐿(𝑥) ≕ 𝑥(ℓ). As of [[Rud98], VII.6.2], we have an associated formal group law 

𝐹𝑥(ℓ)
 on MGL∗

(ℓ) ≔ ⊕𝑖 MGL2𝑖,𝑖
(ℓ) .

Recall that a homomorphism between formal group laws 𝐹  and 𝐺 is a power series 𝑓(𝑥) such 

that 𝑓(𝐹(𝑥, 𝑦)) = 𝐺(𝑓(𝑥), 𝑓(𝑦)). If the coefficient of 𝑥 is invertible, we say 𝑓  is an isomorphism, 

and if the coefficient of 𝑥 is 1, we say 𝑓  is a strict isomorphism. We call a strict isomorphism 

from 𝐹  to the additive formal group law 𝑥 + 𝑦 the logarithm of 𝐹 .

Definition 3.4.12 Let ℓ be a prime. A formal group law 𝐹  over a ℤ(ℓ)-algebra is called ℓ-typical 

if its logarithm takes the form ∑𝑖≥0 𝑎𝑖𝑥ℓ𝑖
 with 𝑎0 = 1.

In order to have a direct analog of topological Brown-Peterson spectrum in chromatic homo

topy theory. We want to have a universal ℓ-typical formal group law (see also the discussion 

before Corollary 4.2.7). We use the following theorem due to Cartier:

Theorem 3.4.13 [[Haz12], 16.4.14] Let 𝐴 be a ℤ(ℓ)-algebra, then every formal group law over 𝐴 is 

strictly isomorphic to a ℓ-typical group law over 𝐴.
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Set 𝐴 = MGL∗
(ℓ) in the above theorem, we can assume 𝐹𝑥(ℓ)

 ℓ-typical. By Theorem 3.4.11 this is 

related to a map

𝑒 : MGL → MGL(ℓ). (3.4.15)

The unique ring spectra map

𝑒(ℓ) : MGL(ℓ) → MGL(ℓ) (3.4.16)

such that 𝐿∗(𝑒(ℓ)) = 𝑒 is called the motivic Quillen idempotent. Since 𝑒(ℓ) is associated to an ℓ-

typical formal group law, it is idempotent by [[Haz12], 31.1.9].

Definition 3.4.14 The motivic Brown-Peterson spectrum BP(ℓ)
mot at a prime ℓ is defined as the 

sequential colimit of

… ⟶
𝑒(ℓ)

MGL(ℓ) ⟶
𝑒(ℓ)

MGL(ℓ) ⟶
𝑒(ℓ)

… (3.4.17)

In particular, BP(ℓ)
mot is a direct summand of MGL(ℓ).

As shown later in §4.2, we can define the motivic Brown-Peterson spectrum directly from 

motivic Landweber theory proven in [NSØ09], assuming the Hopkins-Morel-Hoyois isomor

phism. However, the discussion here provides an explicit construction.

3.5 Thom spectra

In this section we want to establish an ℰ︀∞-ring structure on MGL over any base scheme 𝑆. 

The result is crucial later in the proof of our main theorem Theorem 5.2.1. A priori, Definition 

3.4.5 already gives us a hint on constructing ring structure using the induced map 𝛾𝑛 × 𝛾𝑚 →
𝛾𝑛+𝑚. But this approach is computationally overwhelmed and does not directly give us an 

element in CAlg(𝒮︀ℋ︀(𝑆)). Instead, we follow the approach in [[BH21], §16] and define a motivic 

counterpart of the Thom spectrum functor.

Let 𝒮︀ℋ︀ : 𝒮︀mop
𝑆 → CAlg(Pr𝐿) be the stable functor constructed in Definition 3.2.7, note this 

functor is by construction a spherical presheaf in the sense of Proposition 6.5.13.

We write Span ≔ Span(𝒮︀m𝑆, all, fold) as the category of spans defined in Definition 6.6.1. In 

view of Proposition 6.6.4, 𝒮︀ℋ︀ is a product-preserving functor 𝒮︀ℋ︀ : Span → Pr𝐿. In fact, there 

are more good properties of this functor:

In order to build multiplicative structures, we need to borrow some concepts from the six-

functor formalism. This was mainly done by Ayoub in [Ayo07].

Proposition 3.5.1 [[Ayo07], §1.4.1]

1. For any 𝑋, 𝑌 ∈ 𝒮︀m𝑆  we have 𝒮︀ℋ︀(𝑋 ∐ 𝑌 ) ≃ 𝒮︀ℋ︀(𝑋) × 𝒮︀ℋ︀(𝑌 ), thus a fold map ∇ : 𝑌 → 𝑍 

induces a functor ∇⊗ : 𝒮︀ℋ︀(𝑌 ) → 𝒮︀ℋ︀(𝑍) by smash product.

2. For any 𝑓 : 𝑌 → 𝑋 smooth in 𝒮︀m𝑆 , we have two symmetric monoidal (with respect to smash 

product) adjunction pairs
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𝑓∗ : 𝒮︀ℋ︀(𝑌 ) ⇆ 𝒮︀ℋ︀(𝑋) : 𝑓∗

𝑓♯ : 𝒮︀ℋ︀(𝑋) ⇆ 𝒮︀ℋ︀(𝑌 ) : 𝑓∗.
(3.5.1)

And 𝑓♯, 𝑓∗ satisfy the projection formula

𝑓♯(𝐴 ∧ 𝑓∗𝐵) ≃ 𝑓♯(𝐴) ∧ 𝐵. (3.5.2)

3. For any Cartesian square

𝑔′

𝑓𝑓 ′

𝑔

𝑋′ 𝑋

𝑌 ′ 𝑌
where 𝑓  and 𝑓 ′ are smooth we have smooth base change, i.e.

Ex∗
♯ : 𝑓 ′

♯ (𝑔′)∗ ⟹ 𝑔∗𝑓♯ (3.5.3)

is an equivalence.

4. [[BH21], Proposition 5.10] for 𝑢, 𝑢′ smooth and ∇, ∇′ fold maps in the commutative diagram

𝑓 ′

𝑢′𝑔
𝑓

∇′

∇
𝑢

𝑊 𝑌 ′

𝑋 𝑌

𝑍′

𝑍
there is a distributivity transformation

Dist♯,⊗ : 𝑢♯∇′
⊗(𝑓 ′)∗ ⟹ ∇⊗(𝜋𝑌 )♯(𝜋𝑊 )∗ (3.5.4)

and this is an equivalence if the right square is a pullback and 𝑍′ = 𝑅𝑌 /𝑍(𝑊 ×𝑋 𝑌 ) is a Weil restriction 

in the sense of [[BH21], §2.3].

Proposition 3.5.2 For any 𝑋 ∈ 𝒮︀m𝑆 , 𝒮︀ℋ︀(𝑋) admits sifted colimits and 𝒮︀ℋ︀ lifts to a functor in 

Catsift
∞ .

Proof. Note first for any 𝑋, 𝒮︀ℋ︀(𝑋) is cocomplete and thus admits sifted colimit. In order to 

lift 𝒮︀ℋ︀, we need to show that for any 𝑋 ←
𝑓

𝑌 →
∇

𝑍, where 𝑓  is smooth and ∇ is a fold map, 

the induced map ∇⊗ ∘ 𝑓∗ : 𝒮︀ℋ︀(𝑋) → 𝒮︀ℋ︀(𝑍) as in Proposition 3.5.1 preserves sifted colimits. 

As a left adjoint, 𝑓∗ preserves all colimits and since ∇⊗ is induced from the smash product, it 

commutes with sifted colimits. □

Theorem 3.5.3 Let ℒ︀ be the collection of smooth quasi-projective morphisms in Sch𝑆 . There is a strict 

natural transformation

𝑀 : 𝒫︀Σ(ℒ︀/𝒮︀ℋ︀) → 𝒮︀ℋ︀ (3.5.5)
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extending

ℒ︀/𝒮︀ℋ︀ → 𝒮︀ℋ︀, 𝑓 ↦ 𝑓♯ (3.5.6)

by objectwise sifted cocompletion and 𝑀  preserves colimits.

Proof. We give the proof in amount of [[Ban25], Theorem 2.20]. Let Funℒ︀(Δ1, Span) ⊂
Fun(Δ1, Span) be the full subcategory generated by spans 𝑋 ←

𝑓
𝑌 →

∇
𝑍 with 𝑓 ∈ ℒ︀. Let 𝑠, 𝑡 :

Fun(Δ1, Span) be source and target functors. The composition of 𝒮︀ℋ︀ with evaluation ev :
Funℒ︀(Δ1, Span) × Δ1 → Span yields a natural transformation

𝜑 : 𝒮︀ℋ︀ ∘ 𝑠 → 𝒮︀ℋ︀ ∘ 𝑡 : Funℒ︀(Δ1, Span) → Catsift
∞ . (3.5.7)

Suppose 𝐸 : ℰ︀ → Spanop is a Cartesian fibration classified by 𝒮︀ℋ︀, then 𝜑 can be viewed as 

a map 𝜑 : 𝑠∗ℰ︀ → 𝑡∗ℰ︀ in Funℒ︀(Δ1, Span)op as [[Lur09], Definition 3.3.2.2]. For a smooth map 

𝑓 : 𝑌 → 𝑋 in ℒ︀, the fiber of 𝜑 over 𝑓  is the pullback 𝑓∗ : 𝒮︀ℋ︀(𝑋) → 𝒮︀ℋ︀(𝑌 ). By Proposition 

3.5.1, it has a left adjoint 𝑓♯. By [[BH21], Lemma D.3], the fiberwise adjoint of 𝜑 gives a relative 

adjunction

𝜓 : 𝑡∗ℰ︀ ⇆ 𝑠∗ℰ︀ : 𝜑. (3.5.8)

On components, 𝜓 encodes the map 𝑓♯ by construction, therefore the naturality follows from 

the smooth base change Ex∗
♯ . We consider the following diagram

𝜓

𝑡∗𝐸

𝜒

𝑠∗𝐸 𝐸
𝑠op

𝑡∗ℰ︀ 𝑠∗ℰ︀ ℰ︀

Funℒ︀(Δ1, Span)op Spanop

where the square is Cartesian by construction. As a Weil restriction [[BH21], §2.3], 𝑠 is a 

coCartesian fibration, and therefore 𝑠op ∘ 𝑡∗𝐸 is a Cartesian fibration, and so does 𝜒 ∘ 𝜑, its fiber 

over 𝑋 ∈ Sch𝑆  is a functor

(ℒ︀𝑋)⫽𝒮︀ℋ︀ → 𝒮︀ℋ︀(𝑋), (𝑓 : 𝑌 → 𝑋, 𝑃 ∈ 𝒮︀ℋ︀(𝑌 )) ↦ 𝑓♯𝑃 (3.5.9)

where (ℒ︀𝑋)⫽𝒮︀ℋ︀ is the Cartesian fibration classified by 𝒮︀ℋ︀. It remains to check 𝜒 ∘ 𝜓 preserves 

Cartesian edges.

We inspect the behavior of 𝑠op ∘ 𝑡∗𝐸 in detail. Let 𝑒 be an (𝑠op ∘ 𝑡∗𝐸)-Cartesian edge, then 𝑡∗𝐸(𝑒) 
is the opposite of an edge in Funℒ︀(Δ1, Span) of the form

id id id

𝑔 𝑢′ 𝑢

𝑓 ′ ∇′

𝑓 ∇

𝑊

𝑊

𝑋

𝑌 ′

𝑌 ′

𝑌

𝑍′

𝑍′

𝑍
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where the down right square is a pullback square and 𝑌 ′ = 𝑅𝑌 / 𝑍(𝑊 ×𝑋 𝑌 ) ×𝑍 𝑌  and 𝑍′ =
𝑅𝑌 / 𝑍(𝑊 ×𝑋 𝑌 ). Since 𝑒 is a Cartesian lift of 𝑡∗(𝐸)(𝑒), it is of the form

𝛼 : (𝑍 ← 𝑍′ →
id

𝑍′, 𝐻) → (𝑋 ← 𝑊 →
id

𝑊, 𝐹) (3.5.10)

with 𝐻 ∈ 𝒮︀ℋ︀(𝑍′) and 𝐹 ∈ 𝒮︀ℋ︀(𝑊), where 𝛼 consists in the data in the diagram above together 

with an equivalence 𝐻 ≃ ∇′
⊗(𝑓 ′)∗𝐹 .

By commutativity 𝜒(𝜓(𝑒)) is an edge (𝑍, 𝑢♯𝐻) → (𝑋, 𝑔♯𝐹) is given by (𝑋 ← 𝑌 → 𝑍)op and 

𝑢♯𝐻 → ∇⊗𝑓∗𝑔♯𝐹  as the composition of

𝑢♯𝐻 →≃ 𝑢♯∇′
⊗(𝑓 ′)∗𝐹 →

Dist♯,⊗
∇⊗(𝜋𝑌 )♯(𝜋𝑊 )∗𝐹 →

Ex∗
♯
∇⊗𝑓∗𝑔♯𝐹 (3.5.11)

where 𝜋𝑌 : 𝑌 ×𝑋 𝑊 → 𝑌  and 𝜋𝑊 : 𝑌 ×𝑋 𝑊 → 𝑊  are projections. By the last two statements 

of Proposition 3.5.1 we see this is indeed an equivalence, thus 𝜒(𝜓(𝑒)) is 𝐸-Cartesian.

Now we can restrict the functor 𝜒 ∘ 𝜓 to the wide subcategory ℒ︀/𝒮︀ℋ︀ in ℒ︀⫽𝒮︀ℋ︀. Finally Propo

sition 3.5.2 together with Proposition 6.5.13 gives a lift

𝑀 : 𝒫︀Σ(ℒ︀/𝒮︀ℋ︀) → 𝒮︀ℋ︀ (3.5.12)

of 𝜒 ∘ 𝜓 by objectwise sifted cocompletion. □

Definition 3.5.4 The colimit-preserving functor 𝑀𝑆 : 𝒫︀Σ((𝒮︀m𝑆)/𝒮︀ℋ︀) → 𝒮︀ℋ︀(𝑆) is called the 

motivic Thom spectrum functor.

Remark 3.5.5

1. Notice that 𝒫︀Σ((𝒮︀m𝑆)/𝒮︀ℋ︀) ≃ 𝒫︀Σ(𝒮︀m𝑆)/𝒮︀ℋ︀ ≃ 𝒫︀Σ(𝒮︀m𝑆)/𝒮︀ℋ︀≃  by [[ABG18], §5.3], where 𝒮︀ℋ︀≃ 

is the functor sending a scheme 𝑆 to the core of 𝒮︀ℋ︀(𝑆) as defined in Definition 6.1.15.

2. Let 𝑋 ∈ 𝒫︀Σ(𝒮︀m𝑆) and 𝜑 : 𝑋 → 𝒮︀ℋ︀ be a natural transformation. Since 𝑋 is a colimit of 

representable objects, we have 𝜑 ≃ colim𝛼:𝑈→𝑋𝜑 ∘ 𝛼 and since 𝑀𝑆  is colimit-preserving and 

the extension of (𝒮︀m𝑆)/𝒮︀ℋ︀, we have

𝑀𝑆(𝜑) ≃ colim𝑓:𝑈→𝑆,𝛼∈𝑋(𝑈)𝑓♯𝜑𝑈(𝛼). (3.5.13)

3. [[BH21], Proposition 16.9] The Thom spectrum functor 𝑀𝑆  automatically satisfies Nisnevich 

descents, but is not always 𝔸1-invariant. On the other hand, it is plausible that the restriction 

of 𝑀𝑆  onto 𝒫︀(𝒮︀m𝑆)/Sph is 𝔸1-invariant. This is currently unknown.

Let Vect(𝑋) be the symmetric monoidal ∞-category of vector bundles over 𝑋 ∈ 𝒮︀m𝑆 , with 

symmetric monoidal structure given by direct sums. We have a symmetric monoidal functor

Vect(𝑋) → ShvNis(𝒮︀m𝑋), 𝜉 ↦ Th(𝜉) (3.5.14)

and this is natural in 𝑋. As localization and stabilization are symmetric monoidal, we obtain

Vect(𝑋) → Sph(𝑋), 𝜉 ↦ Σ∞
ℙ1Th(𝜉) (3.5.15)
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still natural in 𝑋, where Sph(𝑋) is the anima spanned by invertible objects in 𝒮︀ℋ︀(𝑋)≃. And 

this gives us a natural transformation

Vect → Sph : Span → CAlg(An). (3.5.16)

Since Sph(𝑋) is an anima, by taking the group completion of Vect(𝑋), we have the factorization

𝑗

Vect

Vectgp

Sph

𝐾
by Proposition 6.6.6, since 𝐾 is a right Kan extension of Vectgp and as a Zariski sheaf, Sph is 

the right Kan extension of its restriction onto affine spaces.

Definition 3.5.6 The above natural transformation 𝑗 : 𝐾 → Sph is called the motivic 𝐽 -homo

morphism.

Proposition 3.5.7 Let 𝑒 : 𝐾⚬ ↪︎ 𝐾 be the injection of rank 0 part of algebraic 𝐾-theory. The bundle 𝛾 :
BGL → 𝐾⚬ representing 𝔸1-localization of tautological bundle induces an equivalence in 𝒮︀ℋ︀(𝑆):

MGL𝑆 = 𝑀𝑆(𝑗 ∘ 𝑒 ∘ 𝛾) ≃ 𝑀𝑆(𝑗 ∘ 𝑒). (3.5.17)

Proof. We will still focus the case when 𝑆 is a regular scheme. The general case also follows 

from smooth base change to Spec ℤ.

By Remark 3.5.5 and the fact that 𝐾 is an 𝔸1-invariant sheaf on regular schemes (see e.g. 

[[TT90], Theorem 10.8]), 𝑀𝑆(𝑗 ∘ −) inverts 𝔸1-homotopy, satisfies Nisnevich descents and has 

the explicit representation

𝑀𝑆(𝑗 ∘ 𝑒 ∘ 𝛾) ≃ colim(𝑋,𝛾𝑋)(𝑝𝑋)♯(Σ
∞
ℙ1Th(𝛾𝑋)) = MGL𝑆. (3.5.18)

It remains to show 𝛾 is already 𝔸1-invariant, for this, we consider the commutative diagram

𝑓 𝑔

BGL 𝐾⚬

BétGL 𝐾⚬

where 𝐾⚬ the connected component of 0 in 𝐾⚬ and BétGL the étale classifying space of GL. 

𝑓  is a motivic equivalence by [[MV99], §4, Proposition 2.6] and 𝑔 is a Zariski equivalence. 

Therefore, it suffices to compare 𝐿𝔸1BGL → 𝐿𝔸1𝐾⚬ on affine covers. But it is an equivalence as 

a homological equivalence between connected 𝐻-space. □
Using this equivalence we can equip a commutative algebra structure on MGL𝑆 .

Corollary 3.5.8 The algebraic cobordism spectrum is equipped with an ℰ︀∞-ring structure.

Proof. Since 𝑀𝑆  is colimit preserving, it sends objects in CAlg(𝒫︀Σ(𝒮︀m𝑆)/𝒮︀ℋ︀≃) to objects in 

CAlg(𝒮︀ℋ︀(𝑆)). It remains to check that the motivic 𝐽 -homomorphism on zeroth summand is 
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a commutative algebra object in 𝒫︀Σ(𝒮︀m𝑆)/𝒮︀ℋ︀≃ . We observe this follows from the following 

lemma, which is purely algebraic and has nothing to do with our main purpose. □

Lemma 3.5.9 [[BH21], Proposition 16.17] There is a functor

𝑀|ℒ︀ : 𝒫︀Σ(Spanop)/𝒮︀ℋ︀ → CAlg(𝒫︀Σ(𝒮︀m𝑆)/𝒮︀ℋ︀) (3.5.19)

induced by the target functor 𝑡 : Funℒ︀(Δ1, Span) → Span, where Funℒ︀(Δ1, Span) is the full subcat

egory generated by 𝑋 ←
𝑓

𝑌 = 𝑌  for 𝑓  a smooth quasi-projective morphism.

Remark 3.5.10 This ℰ︀∞ structure is different from the one defined in [GS09] by inverting the 

Bott element in every stage of BGL. In fact, [HY20] shows that the two structure must differ 

after complex Betti realization (see also Theorem 4.4.1) and is only an isomorphism of ℰ︀2-rings, 

supposing 𝑆 has complex points.

4 Motivic filtrations and realizations

4.1 Motivic slice tower

To give a reasonable justification of what connectivity in 𝒮︀ℋ︀(𝑆) means, one can try to define 

the notion of effective spectra as in [Voe02].

Definition 4.1.1

1. The full subcategory of 𝒮︀ℋ︀(𝑆) generated by spectra Σ𝑛
𝕊1Σ∞

ℙ1𝑋+, 𝑛 ∈ ℤ under colimits, where 

𝑋 ∈ 𝒮︀m𝑆  a smooth scheme, is called the category of effective motivic spectra, denoted by 

𝒮︀ℋ︀eff(𝑆).
2. For any 𝑘 ∈ ℤ, the category of 𝑘-effective spectra 𝒮︀ℋ︀eff(𝑆)(𝑘) is generated by

Σ𝑛
𝕊1Σ∞

ℙ1((ℙ1)∧𝑘 ∧ 𝑋)
+
, 𝑛 ∈ ℤ. (4.1.1)

where 𝑋 ∈ 𝒮︀m𝑆  a smooth scheme.

Remark 4.1.2

1. 𝒮︀ℋ︀eff(𝑆) is a stable ∞-category, since by definition it contains all colimits and the desus

pension Ω ≃ Σ−1
𝕊1  of any object.

2. The category of effective spectra does not contain any ℙ1-desuspension of Σ∞
ℙ1𝑋+, this can 

be rephrased into certain connectivity with respect to 𝔾𝑚, as we have ℙ1 ≃ 𝕊1 ∧ 𝔾𝑚.

3. We have a natural tower of full embeddings:

…𝒮︀ℋ︀eff(𝑆)(𝑘 + 1) ⊂ 𝒮︀ℋ︀eff(𝑆)(𝑘) ⊂ 𝒮︀ℋ︀eff(𝑆)(𝑘 − 1) ⊂ … (4.1.2)

Definition 4.1.3 On 𝒮︀ℋ︀eff(𝑆) we define the effective homotopy 𝑡-structure as follows:
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𝒮︀ℋ︀eff(𝑆)≥0 ≔ 𝒮︀ℋ︀eff(𝑆) ∩ 𝒮︀ℋ︀(𝑆)≥0

𝒮︀ℋ︀eff(𝑆)≤0 ≔ 𝒮︀ℋ︀eff(𝑆) ∩ 𝒮︀ℋ︀(𝑆)≤0

(4.1.3)

where (𝒮︀ℋ︀(𝑆)≥0, 𝒮︀ℋ︀(𝑆)≤0) is the homotopy 𝑡-structure defined in Definition 3.3.6.

Proposition 4.1.4 The inclusion functor 𝜄𝑘 : 𝒮︀ℋ︀eff(𝑆)(𝑘) → 𝒮︀ℋ︀(𝑆) admits a right adjoint 𝑟𝑘 :
𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀eff(𝑆)(𝑘).

Proof. This is again an example of adjoint functor theorem Theorem 6.5.8. It suffices to check 

𝒮︀ℋ︀eff(𝑆)(𝑘) is presentable and 𝜄𝑘 preserves colimits.

By definition, 𝒮︀ℋ︀eff(𝑆)(𝑘) is generated under colimits by a small set of objects Σ2𝑘+𝑚,𝑘Σ∞
ℙ1𝑋+. 

Now it’s clear that 𝑋+ is compact in 𝒫︀(𝒮︀m𝑆) and the inclusion ℋ︀(𝑆)∗ → 𝒫︀(𝒮︀m𝑆)∗ preserves 

filtered colimits. By construction Ω∞ preserves filtered colimits and 𝜄𝑘 preserves colimits 

since 𝒮︀ℋ︀eff(𝑆)(𝑘) is closed under all small colimits. We can conclude using Lemma 6.5.6 and 

Theorem 6.5.7. □
For a motivic spectrum 𝐸, we set 𝐸𝑘 ≔ 𝜄𝑘(𝑟𝑘(𝐸)), called the 𝑘-effective cover of 𝐸. We then 

have a filtration

… → 𝐸𝑘+1 → 𝐸𝑘 → 𝐸𝑘−1 → … (4.1.4)

Definition 4.1.5 The filtration (4.1.4) is called the slice filtration of motivic spectra. The graded 

piece is called the slice.

This filtration is exhaustive: to see this, notice 𝜄𝑘 ∘ 𝑟𝑘 preserves colimits and for every effective 

spectrum Σ∞
ℙ1𝑋+, there exists a 𝑘 ∈ ℤ such that Σ∞

ℙ1𝑋+ ∈ 𝒮︀ℋ︀eff(𝑆)(𝑘). Since 𝜄𝑘𝑟𝑘 ∘ 𝜄𝑛𝑟𝑛 ≃ 𝜄𝑘𝑟𝑘 

for 𝑛 < 𝑘, we conclude that

Map𝒮︀ℋ︀(𝑆)(Σ∞
ℙ1𝑋+, 𝜄𝑘𝑟𝑘colim𝑛𝐸𝑛) ≃ Map𝒮︀ℋ︀eff(𝑆)(𝑘)(Σ∞

ℙ1𝑋+, 𝑟𝑘(𝐸))

≃ Map𝒮︀𝒥︀(𝑆)(Σ∞
ℙ1𝑋+, 𝐸).

(4.1.5)

This filtration is not always complete. This will be related to the convergence of slice spectral 

sequences later in §5.1.

Remark 4.1.6 The primary aim of Voevodsky to introduce slice filtration on spectra is to relate 

motivic cohomology with algebraic 𝐾-theory by a spectral sequence (see [[Voe02], Conjecture 

7, §7]), which mimics the spectral sequence of singular cohomology that converges to topolog

ical 𝐾-theory of a space. This was established over a Dedekind domain in [Lev08] and over 

arbitrary regular base scheme in [BEM25].

Voevodsky’s notion of slices is not compatible with the homotopy 𝑡-structures on 𝒮︀ℋ︀(𝑆) and 

𝒮︀ℋ︀. For example, suppose we want our realization functor (defined in §4.3) to be 𝑡-exact, one 
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has to make sure that the desuspension functor Σ−𝑛 or Σ−𝑛,0 changes connectedness in both 

𝒮︀ℋ︀ and 𝒮︀ℋ︀(𝑆), however, this is not the case in the latter one.

Instead, we consider a notion of very effective spectra as introduced in [SØ12].

Definition 4.1.7

1. The full subcategory in 𝒮︀ℋ︀(𝑆) generated under colimits by spectra Σ𝑛
𝕊1Σ∞

ℙ1𝑋+, 𝑛 ≥ 0 is 

called the category of very effective spectra, denoted by 𝒮︀ℋ︀veff(𝑆).
2. For any 𝑘 ∈ ℤ, the category of 𝑘-very effective spectra is generated by

Σ𝑛
𝕊1Σ∞

ℙ1((ℙ1)∧𝑘 ∧ 𝑋)
+
, 𝑛 ≥ 0. (4.1.6)

where 𝑋 ∈ 𝒮︀m𝑆  a smooth scheme.

Example 4.1.8 [[BH21], Lemma 13.1] Let 𝑋 be a smooth scheme and 𝜉 be a bundle of rank 𝑛 

over 𝑋. Let Σ∞
ℙ1Th(𝜉) be the Thom spectrum of 𝜉 as constructed in §3.5, then Σ∞

ℙ1Th(𝜉) is 𝑛-

very effective. In particular, MGL is very effective.

The follow proposition justifies the relation between effective and very effective spectra.

Proposition 4.1.9 [[Bac17], Proposition 4]

1. We have 𝒮︀ℋ︀veff(𝑆) = 𝒮︀ℋ︀eff(𝑆)≥0.

2. The functor 𝑟0 : 𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀eff(𝑆) is 𝑡-exact.

Remark 4.1.10

1. Unlike the category of effective spectra, the subcategory of very effective spectra is not stable 

as a truncation with respect to the 𝑡-structure.

2. This subcategory is presentable by Proposition 6.5.11. And by Proposition 6.2.23, the effec

tive homotopy 𝑡-structure is the uniquely accessible 𝑡-structure on 𝒮︀ℋ︀eff(𝑆) determined by 

the collection of objects Σ∞
ℙ1𝑋+ where 𝑋 ∈ 𝒮︀m𝑆 .

By the same argument in Proposition 4.1.4, for the inclusion 𝜄̃𝑘 : 𝒮︀ℋ︀veff(𝑆)(𝑘) → 𝒮︀ℋ︀(𝑆) we 

have a right adjoint ̃𝑟𝑘 : 𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀veff(𝑆)(𝑘), and this induces a tower of very effective cover 

of spectra:

… → 𝐸𝑘+1 ≔ 𝜄̃𝑘+1𝑟̃𝑘+1𝐸 → 𝐸𝑘 → 𝐸𝑘−1 → … (4.1.7)

Definition 4.1.11 The filtration (4.1.7) is called the generalized slice filtration of motivic spectra. 

The graded piece is called the generalized slice.

We collect some interesting (generalized) slices of motivic spectra in the following example.

Examples 4.1.12

1. [[Voe04], Theorem 6.6] If 𝑆 is essentially smooth over a field, then gr0𝕊∗
𝑆 ≃ 𝑀ℤ.
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2. [[Lev08], Theorem 9.0.3] If 𝑆 is the spectrum of a Dedekind domain, then gr0𝕊∗
𝑆 ≃ 𝑀ℤ. An 

argument for any qcqs scheme can be found in [BEM25].

3. [[Lev08], Theorem 6.4.2, Theorem 9.0.3] The slices of KGL∗ over a perfect field are all 

isomorphic to the zero slice of 𝕊𝑘. Again the case for qcqs schemes is treated in [BEM25].

4. [[Bac17], Theorem 16] The generalized slices of K̃O∗ are given by

g̃r𝑛K̃O∗ ≃ Σ𝑛
ℙ1 ∧

{



g̃r0K̃O∗  𝑛 ≡ 0(mod 4)

𝑀ℤ / 2   𝑛 ≡ 1(mod 4)
𝑀ℤ      𝑛 ≡ 2(mod 4)
0         𝑛 ≡ 3(mod 4)

(4.1.8)

where g̃r0K̃O∗ fits into two decompositions

𝑀ℤ / 2[1] → g̃r0K̃O∗ → 𝑀̃ℤ

𝔾𝑚 ∧ 𝑀𝑊
ℤ → g̃r0K̃O∗ → 𝑀ℤ

(4.1.9)

here 𝑀̃ℤ ≔ 𝜄̃0𝑟̃0𝐾MW
∗  is the generalized motivic cohomology and 𝑀𝑊

ℤ  is the Witt-motivic 

cohomology. This result matches the topological nature of KO, i.e. the Bott periodicity.

4.2 Hopkins-Morel isomorphism

We are now going to determine the zeroth slice of algebraic cobordism. This is an ingredient 

in our proof of main theorem and has fundamental importance on transferring the theory of 

chromatic homotopy theory into algebraic setting.

In this section we fix 𝑘 a field of exponential characteristic 𝑒, that is, if char 𝑘 = 0, then 𝑒 =
1 else 𝑒 = char 𝑘. Unless otherwise stated, the connectedness of a spectrum always means 

connectivity with respect to homotopy 𝑡-structure of 𝒮︀ℋ︀(𝑘) in Definition 3.3.6.

For any oriented ring spectrum 𝐸 ∈ 𝒮︀ℋ︀(𝑘), we have

𝐸∗,∗BGL𝑟 ≅ 𝐸∗,∗[[𝑐1, …, 𝑐𝑛]] (4.2.1)

where 𝑐𝑖 is the 𝑖-th Chern class of the tautological bundle. Just like in topology, this 

isomorphism comes from the calculation of 𝐸∗,∗(Gr𝑟(𝔸𝑘+𝑟)) and a limit argument [[NSØ09], 

Proposition 6.2 (i)]. For 𝛽𝑛 ∈ 𝐸∗,∗BGL, the element dual to 𝑐𝑛
1 , an easy calculation shows that

𝐸∗,∗BGL ≅ 𝐸∗,∗[𝛽1, 𝛽2, …]. (4.2.2)

Since the restriction 𝐸∗,∗BGL → 𝐸∗,∗ℙ∞ kills all higher Chern classes, we know 𝛽𝑛’s span 

𝐸∗,∗ℙ∞.

Now under the Thom isomorphism [[NSØ09], Proposition 6.2 (iii)]

𝐸∗,∗ℙ∞ ≅ 𝐸∗,∗Σ−2,−1MGL1 (4.2.3)

we have dual elements 𝑏𝑛 ∈ 𝐸2𝑛,𝑛Σ−2,−1MGL1 and the isomorphism

𝐸∗,∗MGL ≃ 𝐸∗,∗BGL ≃ 𝐸∗,∗[𝑏1, 𝑏2, …]. (4.2.4)
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If we take 𝐸 = 𝑀ℤ, from this isomorphism we get a map

MGL/(𝑏1, 𝑏2, …) → 𝑀ℤ. (4.2.5)

Now we can formulate the Hopkins-Morel-Hoyois isomorphism [[Hoy15], Theorem 7.12].

Theorem 4.2.1 (Hopkins-Morel-Hoyois) Let 𝑘 be a field of exponential characteristic 𝑒 and MGL ∈
𝒮︀ℋ︀(𝑘) the algebraic cobordism spectrum. The canonical map

𝑓 : MGL/(𝑏1, 𝑏2, …)[1/𝑒] → 𝑀ℤ[1/𝑒] (4.2.6)

is an equivalence.

Remark 4.2.2 Theorem 4.2.1 is an direct analogue of Quillen’s theorem, saying

MU/(𝑏1, 𝑏2, …) ≃ 𝐻ℤ. (4.2.7)

Put 𝐿 ≔ ℤ[𝑏1, 𝑏2, …] the Lazard ring, the theorem above can be rephrased as

𝐿[1/𝑒] ≅ MGL2,1(𝑘)[1/𝑒] (4.2.8)

classifying all formal group laws [[Hoy15], Proposition 8.2].

We write Λ for MGL/(𝑏1, 𝑏2, …) for simplicity.

Lemma 4.2.3 𝑀ℤ ∧ 𝑓 : 𝑀ℤ ∧ Λ[1/𝑒] → 𝑀ℤ ∧ 𝑀ℤ[1/𝑒] is an equivalence.

Sketch of proof. As noted in [Hoy15], it is reduced to check 𝐻ℚ ∧ 𝑓  and 𝐻ℤ/ 𝑙 ∧ 𝑓  are equivalences. 

Indeed, set 𝐹 ≔ fib(𝑓), we need to show 𝑀ℤ ∧ 𝐹 = 0. As 𝒮︀ℋ︀(𝑘) is a presentable ∞-category, 

we check on compact object 𝑋 ∈ 𝒮︀ℋ︀(𝑘) that [𝑋, 𝑀ℤ ∧ 𝐹]𝒮︀ℋ︀(𝑘) = 0. It suffices to check

[𝑋, 𝑀ℤ ∧ 𝐹] ⊗ℤ ℚ = 0

[𝑋, 𝑀ℤ ∧ 𝐹] ⊗ℤ ℤ/ 𝑙 = 0

Tor1([𝑋, 𝑀ℤ ∧ 𝐹], ℤ/𝑙) = 0.

(4.2.9)

As is shown in [[Hoy15], Proposition 4.13], the motivic Eilenberg-MacLane construction 𝐻 :
Sp(Fun(Δop, Ab)) → 𝒮︀ℋ︀(𝑆), where Sp(Fun(Δop, Ab)) is the category of spectrum objects in 

simplicial abelian groups, is colimit preserving, as 𝑋 compact, we have

[𝑋, 𝑀ℤ ∧ 𝐹] ⊗ℤ ℚ = [𝑋, 𝐻ℚ ∧ 𝐹] = 0 (4.2.10)

by assumption, and

𝑀ℤ →
⋅𝑙

𝑀ℤ → 𝐻ℤ/𝑙 (4.2.11)

induces a long exact sequence

⋅ 𝑙
[Σ1,0𝑋, 𝐻ℤ/𝑙 ∧ 𝐹] [𝑋, 𝑀ℤ ∧ 𝐹] [𝑋, 𝑀ℤ ∧ 𝐹] [𝑋, 𝐻ℤ/𝑙 ∧ 𝐹]

Tor1([𝑋, 𝑀ℤ ∧ 𝐹], ℤ/𝑙) [𝑋, 𝑀ℤ ∧ 𝐹] ⊗ℤ ℤ/ 𝑙
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which proves the statement. The rational acyclicity follows from [[NSØ09], Corollary 10.3], 

while the torsion case is a consequence of calculation using the motivic Steenrod algebra 

[[Hoy15], Theorem 5.17 & 6.19]. □
We need a fact from localization:

Lemma 4.2.4 For any 𝑀ℤ-acyclic spectrum 𝐸 ∈ 𝒮︀ℋ︀(𝑘) and MGL-localized connective spectrum 𝑋 ∈
𝒮︀ℋ︀(𝑘) we have [𝐸, 𝑋]𝒮︀ℋ︀(𝑘) = 0.

Proof. This follows from the general theory of Bousfield localization [[Lur10], Lecture 20] and 

[[Man18], §5.1, §5.2], as we identify 𝑀ℤ- and MGL-localization both with 𝜂-completion defined 

later in Definition 5.1.4. □
Proof of Theorem 4.2.1. We show 𝐹 ≔ fib(Λ[1/𝑒] → 𝑀ℤ[1/𝑒]) = 0. By Lemma 4.2.3 𝐹  is 𝑀ℤ-acyclic 

and as Λ is a connective MGL-module (since 𝒮︀ℋ︀(𝑘)≥0 is closed under colimit and MGL is 

connective), by Lemma 4.2.4 we have

[𝐹 , Λ[1/𝑒]] = 0. (4.2.12)

Similarly as 𝑀ℤ is a weak MGL-module by the orientation 𝑣 : MGL → 𝑀ℤ and 𝑀ℤ is connective 

by [[Hoy15], Lemma 7.3], we know

[𝐹 , Σ−1,0𝑀ℤ[1/𝑒]] = 0. (4.2.13)

Now use the fiber sequence

Σ−1,0𝑀ℤ[1/𝑒] → 𝐹 → Λ[1/𝑒] → 𝑀ℤ[1/𝑒] (4.2.14)

and by (4.2.12) we have a section 𝐹 → Σ−1,0𝑀ℤ[1/𝑒] which is 0 by (4.2.13), therefore 𝐹 = 0.

□
We also prove some consequences of this theorem.

Corollary 4.2.5 [[Voe02], Conjecture 5] Let 𝑆 be an essentially smooth scheme over a base field 𝑘. The 

slices of MGL∗ in 𝒮︀ℋ︀(𝑆) are given by

gr𝑡MGL∗ ≃ Σ2𝑡,𝑡𝐻𝐿𝑡[1/𝑒] (4.2.15)

where 𝐿𝑡 is the 𝑡-th graded piece of 𝐿 viewed as an Adams graded MU∗-module. In particular, for 𝑘 a 

field of characteristic 0, the zeroth slice of MGL is 𝑀ℤ.

Proof. For any essentially smooth morphism 𝑓 : 𝑆 → Spec 𝑘 of schemes we have gr𝑡𝑓∗ ≃ 𝑓∗gr𝑡 

by essential smooth base change [[Hoy15], Lemma A.7]. Therefore, we may assume 𝑘 is perfect. 

In this case, the statement follows from Theorem 4.2.1 and [[Spi10], Corollary 4.9].

□
In fact, this is true for any Landweber exact theory. Recall a graded 𝐿[1/𝑒]-module 𝑀∗ is called 

Landweber exact, if for every 𝑝 prime, a regular sequence 𝑣(𝑝)
0 , 𝑣(𝑝)

1 , 𝑣(𝑝)
2 , … where 𝑣(𝑝)

𝑛  has degree 

2(𝑝𝑛 − 1) in 𝐿[1/𝑒], is again regular in 𝑀∗. By [[NSØ09], Theorem 8.7], there is a spectrum 𝐸 ∈
𝒮︀ℋ︀(𝑘) representing the functor
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𝒮︀ℋ︀(𝑘) → GrAb

𝑋 ↦ MGL∗∗(𝑋) ⊗𝐿[1/𝑒] 𝑀∗.
(4.2.16)

Theorem 4.2.6 [[Spi12], Theorem 6.1] Let 𝑀∗ be a Landweber exact 𝐿[1/𝑒]-module and 𝐸 the associated 

spectrum in 𝒮︀ℋ︀(𝑘). There is a unique equivalence of 𝑀ℤ-modules:

gr𝑡(𝐸∗) ≃ Σ2𝑡,𝑡𝐻𝑀𝑡
(4.2.17)

making the diagram

𝑣

≅

𝜋0,0MGL ⊗ 𝑀𝑡

𝜋2𝑡,𝑡𝐸

𝜋0,0𝐻𝑀𝑡

𝜋2𝑡,𝑡(gr𝑡(𝐸∗))
commute. Here 𝐻𝑀𝑡

 is the motivic Eilenberg-MacLane spectrum associated to the group 𝑀𝑡.

As a motivic spectrum constructed in Definition 3.4.14, BP(ℓ)
mot is the direct summand of MGL(ℓ) 

killing all ℓ-typical formal group laws. A direct consequence of Theorem 4.2.1 shows that it 

takes the form MGL(ℓ)/𝑥 where 𝑥 ∈ 𝐿 is a regular sequence generating the vanishing ideal of 

all ℓ-typical formal group laws [[Hoy15], Example 8.13]. We have the following corollary:

Corollary 4.2.7 BP(ℓ)
mot is a Landweber exact theory and we have

gr0BP(ℓ)
mot ≃ 𝐻(𝐿(ℓ)[1/𝑒])

0
≃ 𝑀ℤ[1/𝑒] ⊗ ℤ(ℓ). (4.2.18)

Another beautiful consequence is regarding the general slice filtration of a Landweber exact 

spectrum.

Theorem 4.2.8 [[Hea19], Proposition 4.11] For any Landweber exact spectrum 𝐸 ∈ 𝒮︀ℋ︀(𝑘), the slice 

filtration and generalized slice filtration of 𝐸 agree.

Proof. We prove the theorem for MGL, the rest is a comparison of homotopy groups via base 

change. We want to show MGL𝑛 ∈ 𝒮︀ℋ︀veff(𝑘)(𝑛). By Theorem 4.2.1 and [[Spi10], Theorem 4.7], 

we can express MGL𝑛 as the colimit of a diagram of MGL[1/𝑒]-modules like Σ2𝑚,𝑚MGL[1/𝑒] 
for 𝑚 ≥ 𝑛. By Theorem 3.3.2 and construction, MGL is a very effective spectrum, hence 

Σ2𝑚,𝑚MGL[1/𝑒] ∈ 𝒮︀ℋ︀veff(𝑘)(𝑚) by definition. Finally since 𝒮︀ℋ︀veff(𝑘)(𝑚) ⊂ 𝒮︀ℋ︀veff(𝑘)(𝑛) is 

closed under colimits we conclude. □

4.3 Realization functor

Realization functors are colimit preserving exact functors that send motivic spectra into a 

simpler stable ∞-categories, e.g. 𝒮︀ℋ︀. We will introduce three kinds of realization functors: the 

complex Betti realization, the real Betti realization and the étale realization functor. We begin 

with the first two cases.
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Let 𝑘 be a field of characteristic zero equipped with an embedding 𝑘 ↪︎ ℂ. To construct the 

complex realization functor, we lift the functor (−)(ℂ) : 𝒮︀m𝑘 → An, which associates a smooth 

scheme 𝑆 with the homotopy type of the space of its complex points 𝑆(ℂ) under the analytic 

topology, to a colimit preserving functor Reℂ : 𝒫︀(𝒮︀m𝑘) → An by the universal property of 

presheaves Theorem 6.5.3.

Now we put an eye on the compactability of (−)(ℂ) with Nisnevich excision. Since étale 

morphism induces a locally split map over analytic topology, we have precisely the following 

proposition:

Proposition 4.3.1 [[Voe10], Lemma 3.38] Let {𝑈 →
𝑖

𝑋, 𝑉 →
𝑝

𝑋} be a Nisnevich square as defined in 

Definition 3.1.2, then 𝑋(ℂ) ≃ 𝑈(ℂ) ∐(𝑈×𝑉 )(ℂ) 𝑉 (ℂ) is a homotopy equivalence.

Since (−)(ℂ) preserves products, we have

(𝑆 × 𝔸1
𝑘)(ℂ) ≃ 𝑆(ℂ) × 𝔸1

𝑘(ℂ) ≃ 𝑆(ℂ) × ℂ ≃ 𝑆(ℂ) (4.3.1)

and together with the previous proposition, we conclude that Reℂ : 𝒫︀(𝒮︀m𝑘) → An factors 

through ℋ︀(𝑘) of motivic spaces. The same construction works for pointed spaces ℋ︀(𝑘)∗.

The final step is to post-compose the stabilization functor and check whether Σ∞ ∘ Reℂ :
ℋ︀(𝑘)∗ → 𝒮︀ℋ︀ is symmetric monoidal and inverts ℙ1. To see why this suffices, notice that by 

construction 𝒮︀ℋ︀(𝑘) is the universal symmetric monoidal ∞-category that is ℙ1-stable as in 

Proposition 3.2.11. Therefore, such a functor must factor through 𝒮︀ℋ︀(𝑘).

Proposition 4.3.2 The functor Σ∞ ∘ Reℂ : ℋ︀(𝑘)∗ → 𝒮︀ℋ︀ is symmetric monoidal and Σ∞(Reℂ(ℙ1)) 

is a ⊗-invertible spectrum.

Proof. By Proposition 6.4.6, we need to verify that Reℂ preserves finite products. As a right 

adjoint, localization preserves products, and since every presheaf is a colimit of representable 

objects, we see this is true as Reℂ is colimit preserving and (−)(ℂ) preserves products.

We compute

Reℂ(ℙ1) ≃ Reℂ(𝕊1) ∧ Reℂ(𝔾𝑚) ≃ 𝕊1 ∧ ℂ× ≃ 𝕊2 (4.3.2)

where we view 𝕊1 as Σ(∗ ∐ ∗) and use that Reℂ is colimit preserving. Since 𝕊2 is indeed 

invertible in 𝒮︀ℋ︀ we conclude. □

Corollary 4.3.3 The functor Σ∞ ∘ Reℂ : ℋ︀(𝑘)∗ → 𝒮︀ℋ︀ factors through 𝒮︀ℋ︀(𝑘) and induces a functor 

Reℂ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀, which is well-defined, symmetric monoidal, preserves colimits and finite prod

ucts. We call this functor complex Betti realization.

Remark 4.3.4 Notice Reℂ preserves the ℰ︀𝑛-ring structure on 𝒮︀ℋ︀(𝑘) and 𝒮︀ℋ︀ for 1 ≤ 𝑛 ≤ ∞, this 

is a direct consequence of the fact that Reℂ is lax symmetric monoidal.
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We want to understand the ℤ/2-action on ℂ-points of a scheme. We claim it suffices to 

consider only ℝ-schemes. Indeed, if 𝑘 embeds into ℝ, then the embedding 𝛼 : 𝑘 ↪︎ ℝ induces 

a base change functor 𝒮︀m𝑘 → 𝒮︀mℝ, which in turns gives us a bijection 𝒮︀m𝑘(Spec(ℝ), 𝑆) ≃
𝒮︀mℝ(Spec(ℝ), 𝑆 ×𝑘 Spec(ℝ)) for each 𝑆 ∈ 𝒮︀m𝑘.

The set ℂ-points of a ℝ-scheme naturally carries a ℤ/2-action by complex conjugation, hence 

similarly, the functor (−)(ℂ) pre-composing with base change induces a functor Reℝ : ℋ︀(𝑘) →
𝒫︀(𝒪︀ℤ/2), where 𝒪︀ℤ/2 is the orbit category of ℤ/2.

Corollary 4.3.5 The functor Σ∞ ∘ Reℝ : ℋ︀(𝑘)∗ → 𝒮︀ℋ︀𝐶2
, where 𝒮︀ℋ︀𝐶2

 is the category of genuine 𝐶2

-spectra, factors through 𝒮︀ℋ︀(𝑘) and induces a functor Reℝ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀𝐶2
, which is well-defined, 

symmetric monoidal, preserves colimits and finite products. We call this functor real Betti realization.

The following proposition explains the motivation of defining very effective spectra and the 𝑡
-exactness of the realization functor.

Proposition 4.3.6 The restriction of Reℂ : 𝒮︀ℋ︀veff(𝑘)(𝑚) → 𝒮︀ℋ︀≥2𝑚 is well-defined, where 𝒮︀ℋ︀≥2𝑚 

is the subcategory of 2𝑚-connected spectra.

Proof. For any 𝑋+ ∈ ℋ︀(𝑘)∗, we have Reℂ(Σ∞
ℙ1𝑋+) ≃ Σ∞Reℂ(𝑋+) by definition, clearly this is 

connected. Now for each (ℙ1)∧𝑚 ∧ Σ∞
ℙ1𝑋+,

Reℂ((ℙ1)∧𝑚 ∧ Σ∞
ℙ1𝑋+) ≃ 𝕊2𝑚 ∧ Σ∞Reℂ(𝑋+) (4.3.3)

is 2𝑚-connected since Reℂ is symmetric monoidal. The statement now follows from the fact 

that connected spectra are closed under colimits. □

Remark 4.3.7 The proof works similarly for real realization functor which takes value in 𝑚-

connected genuine 𝐶2-spectra.

Until the end of this section we fix an algebraically closed field 𝑘 of characteristic 𝑝.

The situation in étale case is a bit tricky, as the étale homotopy type taken in 𝑝-local coefficients 

is not 𝔸1-invariant in general, and the étale homotopy type functor due to Artin-Mazur-Fried

lander is also not product-preserving.

We therefore work away from the characteristic and give an ∞-categorical definition of the 

étale realization following [Hoy18].

Let An∧ be the category of profinite spaces, it is naturally identified with pro-objects of 

presheaves of Fin finite sets via the limit functor. For any shape 𝑆 ∈ Pro(An), we can associate 

a profinite completion 𝑆∧ ∈ An∧ to it. Our target of étale realization functor will be the 𝕊2-

stabilization of An∧
∗ , viewing 𝕊2 as a constant sheaf, to which we denote 𝒮︀ℋ︀∧,𝕊2

.

Now for any scheme 𝑋, let Ét𝑋 be the étale site over 𝑋 and 𝒳︀ét ≔ Shvét(Ét𝑋) be the ∞-topos 

of étale sheaves on 𝑋, let 𝒳︀∧
ét  be its hypercompletion. As the geometric morphism 𝒳︀ét → 𝒳︀Zar 
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to Zariski sheaves induces an equivalence on (−1)-truncated objects, we see if 𝑋 is locally 

Noetherian, then 𝒳︀ét is locally connected and we may apply the following theorem:

Proposition 4.3.8 [[Hoy18], Corollary 5.6] Let 𝑋 be a scheme such that 𝒳︀ét is locally connected, 

then the étale topological type of 𝑋 corepresents the fundamental pro-∞-groupoid Π∞𝒳︀∧
ét  as defined in 

Definition 6.7.3.

As the fundamental pro-∞-groupoid is a shape, we have a functor Reét : Shvét(𝒮︀m𝑆) →
Pro(An) and by composing with completion and stabilization, a functor Reét : Shvét(𝒮︀m𝑆) →
𝒮︀ℋ︀∧,𝕊2

.

Since étale topology is finer than Nisnevich topology, every étale sheaf is a Nisnevich sheaf, 

and we have the realization functor Reét : ShvNis(𝒮︀m𝑆) → 𝒮︀ℋ︀∧,𝕊2
.

To get an 𝔸1-invariant functor, we have to pick a prime ℓ ≠ char(𝑘) of the base field and localize 

Pro(An) with respect to all pro-morphisms that induce isomorphisms on objectwise continuous 

cohomology with ℤ/ℓ-coefficients. This is a reasonable localization as suggested by [[Isa04], 

Theorem 2.5]. We denote it as Pro(An)ℓ.

Luckily, away from characteristic the étale cohomology is 𝔸1-invariant as [[Sta25], Tag 03SB], 

and by [[Fri82], Proposition 5.9] the realization functor extends to ℋ︀(𝑆) → Pro(An)ℓ →
𝒮︀ℋ︀∧,𝕊2

.

Proposition 4.3.9 We have Reét(ℙ1
𝑘 ) ≅ Σ∞𝕊2.

Proof. This follows from the facts 𝜋ét
1 (ℙ1

𝑘 ) = 0 and (notice Br(𝑘) = 0):

𝐻∗
ét(ℙ1

𝑘 ; ℤ/ℓ) ≅ {
ℤ/ℓ if ∗ = 0, 2
0 else

(4.3.4)

with a chosen isomorphism 𝜇ℓ → ℤ/ℓ. □

Corollary 4.3.10 The functor Reét : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀∧,𝕊2
 is a well-defined exact functor. We call this 

functor étale realization.

Remark 4.3.11 Many classical topological spectra can be completed to pro-𝕊2-spectra via 

completion, for example, MU ↦ M̂U. These profinite spectra represents cohomology theories: 

Let 𝑋 ∈ 𝒮︀m𝑆  and 𝐸 ∈ 𝒮︀ℋ︀∧,𝕊2
, then the 𝑛-th 𝐸-étale cohomology is

𝐸𝑛
ét(𝑋) ≔ [Reét(𝑋), Σ−𝑛𝐸]𝒮︀ℋ︀∧,𝕊2 . (4.3.5)

In particular, the étale cohomology theory representing M̂U is called étale cobordism as defined 

in [[Qui07], §4.2.3].

4.4 Realizations and slices

We collect some realizations of motivic spectra and their slices.
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Theorem 4.4.1 Let MU denote the complex cobordism spectrum in 𝒮︀ℋ︀. Then there is an isomorphism 

of ℰ︀∞ rings: ReℂMGL ≃ MU, where MU is equipped with the ℰ︀∞ structure as a Thom spectrum.

Proof. In order to show that the realization of the motivic Thom spectrum is equivalent to 

the topological Thom spectrum as an ℰ︀∞-ring, it suffices to show that they induce the same 

symmetric monoidal structure on MU.

We observe the construction in Theorem 3.5.3 can be extended to any colimit preserving functor 

𝐹 : Span → Catsift
∞  as pointed out in [[Ban25], §2.4.2]. Fix a cardinal 𝜅. We set 𝐹  to be the functor 

sending 𝑋 ∈ 𝒮︀m𝑘 to 𝒮︀ℋ︀(An/ Reℂ(𝑋))
𝜅

, i.e. the spectra over Reℂ(𝑋) that are closed under 𝜅-

small colimits. By a slight modification of [[Ban25], Proposition 2.36] (replacing ℝ with ℂ), this 

gives us a symmetric monoidal functor

𝑀ℂ : 𝒫︀Σ(𝒮︀m𝑘)/ 𝐹≃ → 𝐹(ℂ) ≃ 𝒮︀ℋ︀ (4.4.1)

and a natural transformation 𝛼 : 𝒮︀ℋ︀ → 𝐹  such that

𝑀𝑘

𝛼♯

𝛼ℂ

𝑀ℂ

𝒫︀Σ(𝒮︀m𝑘)/𝒮︀ℋ︀≃

𝒮︀ℋ︀(𝑘)

𝒫︀Σ(𝒮︀m𝑘)/ 𝐹≃

𝒮︀ℋ︀
commutes. For any 𝑋 ∈ 𝒮︀m𝑘, 𝛼𝑋 sends the structure map 𝑋 → Spec 𝑘 to the complex Betti 

realization Reℂ(Σ∞
ℙ1𝑋+) → 𝕊 and this map is symmetric monoidal. Since complex Betti real

ization factors through 𝔸1-invariant Zariski sheaf and commutes with the 𝔸1-localization as by 

[[Ayo10], Theoreme 4.9], the following diagram

𝑀𝑘

𝛼♯

𝛼ℂ ≃ Reℂ

𝑀ℂ
𝑀 ′

Reℂ

𝒫︀Σ(𝒮︀m𝑘)/𝒮︀ℋ︀≃

𝒮︀ℋ︀(𝑘)

𝒫︀Σ(𝒮︀m𝑘)/ 𝐹≃

𝒮︀ℋ︀

𝐿𝔸1ShvZar(𝒮︀m𝑘)/ 𝐹≃ An/ Sp≃

is a commutative diagram of symmetric monoidal functors, where Sp is the stabilization func

tor (in order to distinguish with our notation of ℙ1-stabilization 𝒮︀ℋ︀) and 𝑀 ′ is our candidate 

of topological Thom spectrum functor. But the argument in [[Ban25], Lemma 2.45] applies and 

we can identity 𝑀 ′ with 𝑀  the topological Thom spectrum functor.

From Reℂ ∘ 𝑀𝑘 ≃ 𝑀 ∘ Reℂ ∘ 𝛼♯ this reduces to job to check whether motivic 𝑗-homomorphism 

composing with 𝛼 is the topological Thom spectrum functor. Recall MU is identified with 

𝑀(BU →
𝑗

𝒮︀ℋ︀≃) and MGL = 𝑀𝑘(𝐾⚬ →
𝑗

𝒮︀ℋ︀≃), so we reduce to check Reℂ(𝐾⚬) ≃ BU. To see 

this, one compute

42



Reℂ(𝐾⚬) ≃ Reℂ(BGL) = Reℂ(colimΔop(GL → GL × GL → …))

≃
1

B (Reℂ(GL)) = B(⋃
𝑛

GL𝑛(ℂ)) ≃
2

B(⋃ 𝑈𝑛(ℂ)) = BU
(4.4.2)

where 1 is true since Reℂ preserves colimit and 2 comes from the deformation retract 𝑈𝑛(ℂ) ↪︎
GL𝑛(ℂ). □

Corollary 4.4.2 Let 𝑘 be a field of characteristic 0 equipped with an embedding 𝑘 ↪︎ ℂ. Let MU∗ be 

the Postnikov filtration on MU and MGL∗ the slice filtration on MGL ∈ 𝒮︀ℋ︀(𝑘), then Reℂ(MGL𝑛) is 

(2𝑛 − 1)-connected, and we have an isomorphism in 𝒮︀ℋ︀:

𝜏≥2𝑛Reℂ(MGL𝑛) ≅ MU2𝑛 (4.4.3)

Proof. By Theorem 4.2.8 and Proposition 4.3.6, it is enough to verify that MGL is (−1)-connected, 

which follows from Theorem 3.3.2 and construction.

For the second assertion, we truncate the slice filtration to 2𝑛-level and consider the two strong 

convergent spectral sequences associated to

… → MGL𝑚+1 → MGL𝑚 → … → MGL

… → MGL𝑚+1 → MGL𝑚 → … → MGL2𝑛.
(4.4.4)

Together with Theorem 4.4.1 this shows that

𝜋𝑚(MU) ≅ 𝜋𝑚(Reℂ(MGL)) ≅ 𝜋𝑚(Reℂ(MGL𝑛)) (4.4.5)

for 𝑚 ≥ 2𝑛. Therefore Reℂ(MGL𝑛) is a (2𝑛 − 1)-connected cover of MU, hence the statement is 

true. □
Since Reℂ preserves colimit and finite products, and BP(ℓ)

mot is a direct summand of MGL(ℓ), by 

Theorem 4.4.1 we have:

Corollary 4.4.3 For ℓ a prime we have ReℂBP(ℓ)
mot ≃ BP(ℓ), where BP(ℓ) ∈ 𝒮︀ℋ︀ is the classical Brown-

Peterson spectrum.

Theorem 4.4.4 [[Ban25], Theorem 2.48] Let 𝑘 be a field of characteristic 0 equipped with an embedding 

𝑘 ↪︎ ℝ. Let MO denote the oriented cobordism spectrum in 𝒮︀ℋ︀𝐶2
. Then there is an isomorphism of ℰ︀∞ 

rings: ReℝMGL ≃ MO.

Proof. Replace the complex realization functor in the proof of Theorem 4.4.1 with real realization 

functor, we deduce that the real realization of motivic Thom spectrum functor agrees with the 

topological Thom spectrum functor as explained in [[Ban25], Theorem 2.47]. Hence it suffices 

to check Reℝ(BGL) ≃ BO. But as 𝑂𝑛(ℝ) ↪︎ GL𝑛(ℝ) is a deformation retract, this is obvious.

□
In general the interaction between slices and Betti realization functor could be very compli

cated, the next two theorems are about the realization of slices of the motivic sphere spectrum.
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Theorem 4.4.5 [[Lev14], Lemma 6.4] Let 𝑘 be a field of characteristic 0 equipped with an embedding 

𝑘 ↪︎ ℂ. Suppose 𝑘 has finite cohomological dimension, then for all 𝑛 and 𝑞, the complex Betti realization 

induces an isomorphism

Reℂ,∗ : 𝜋𝑛,0(gr𝑞𝕊∗
𝑘)(𝑘) ⟶

≅
𝜋𝑛(Reℂ(gr𝑞𝕊∗

𝑘)) (4.4.6)

Corollary 4.4.6 Let 𝑘 be an algebraically closed field of characteristic 0. Fix an embedding 𝜎 : 𝑘 ↪︎ ℂ, 

then 𝜋𝑛,0(𝕊𝑘)(𝑘) ≅ 𝜋𝑛(𝕊) for all 𝑛.

Proof. This is a standard spectral sequence argument. Notice Reℂ is symmetric monoidal and 

Reℂ(𝕊𝑘) ≃ 𝕊. By Theorem 5.1.8 there is a convergent spectral sequence

𝜋𝑛,0(gr𝑞𝕊∗
𝑘)(𝑘) ⇒ 𝜋𝑛,0(𝕊𝑘)(𝑘) (4.4.7)

and the slice induces a spectral sequence

𝜋𝑛(Reℂ(gr𝑞𝕊∗
𝑘)) ⇒ 𝜋𝑛(Reℂ(𝕊𝑘)) ≅ 𝜋𝑛(𝕊). (4.4.8)

Invoke Theorem 4.4.5 and we have the desired result. □
The next example shows that the complex and real Betti realization can be very different.

Theorem 4.4.7 Let 𝑘 be a field of characteristic 0 equipped with an embedding 𝑘 ↪︎ ℝ, then:

1. ReℂKGL ≅ KU, the spectrum representing complex topological 𝐾-theory.

2. ReℝKGL = 0.

Proof. By Proposition 4.3.1 the realization functors satisfy Nisnevich descents, hence Definition 

3.4.6 tells us Reℂ(𝐿mot(ℤ × BGL)) ≃ Reℂ(ℤ × BGL) ≃ ℤ × BU by the same computation in 

Theorem 4.4.1.

Now as Reℂ(ℙ1) ≃ 𝕊2, the structure map after realization is 𝕊2 × Reℂ(𝐸𝑛) → Reℂ(𝐸𝑛+1) for 

a motivic spectrum 𝐸 = (𝐸0, 𝐸1, …). Since Reℂ commutes with colimits, in particular, it com

mutes with the spectrification functor 𝒮︀ℋ︀pre → 𝒮︀ℋ︀, we see that the complex realization of 

KGL should be the 𝕊2-spectrification of

(ℤ × BU, ℤ × BU, …) (4.4.9)

which is also the 𝕊2-spectrification of KU = (ℤ × BU, U, ℤ × BU, 𝑈, …) by complex Bott peri

odicity.

Similarly, Reℝ(KGL) should be the 𝕊1-spectrification of

(Reℝ(ℤ × BGL), Reℝ(ℤ × BGL), …) (4.4.10)

of which we have calculated in Theorem 4.4.4:

Reℝ(ℤ × BGL) ≃ ℤ × BO. (4.4.11)

However, the real Bott periodicity tells us that 𝜋𝑛(ℤ × BO) is the 8-periodic sequence 

ℤ, ℤ / 2, ℤ / 2, 0, ℤ, 0, 0, 0, so the spectrification must be 0. □
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5 Application: Spectral sequences

5.1 Motivic Atiyah-Hirzebruch spectral sequence

As we have already seen in §2.3, each filtration induces a slice spectral sequence. We thus give 

the following definition.

Definition 5.1.1 Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆) and 𝐸∗ the slice filtration on 𝐸. Then Construction 2.3.10 yields 

a spectral sequence related to 𝐸∗, we call this the motivic slice spectral sequence associated 

to 𝐸∗.

Remark 5.1.2 We are primarily interested in the global section of this slice spectral sequence. 

This is also what Levine is referring to as motivic Atiyah-Hirzebruch spectral sequence:

𝐸𝑠,𝑡
1 (𝐴𝐻)(𝐸) ≔ 𝜋𝑠+𝑡,0(gr𝑠𝐸∗)(Spec 𝑘) ⇒ 𝜋𝑠+𝑡,0(𝐸)(Spec 𝑘) (5.1.1)

We have also the ℓ-local and ℓ-complete version of this spectral sequence whenever ℓ is a prime 

different from the characteristic of 𝑘.

Definition 5.1.3 Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆) and ℓ a prime number. We have the ℓ-localization 𝐸(ℓ) and ℓ-

completion 𝐸∧
ℓ  with slice filtrations 𝐸∗

(ℓ) and (𝐸∧
ℓ )∗ respectively. We call the from 𝐸∗

(ℓ) and (𝐸∧
ℓ )∗ 

induced spectral sequences ℓ-local and ℓ-complete motivic slice spectral sequences associated 

to 𝐸.

The convergence of the motivic slice spectral sequence was conjectured in [Voe02]. In order to 

formulate the best convergence result established so far, we introduce some concepts regarding 

the completion of motivic spectra.

Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆) be a spectrum and let 𝐸∗ be the associated slice filtration. We define an 

endofunctor

sc : 𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀(𝑆), 𝐸 ↦ cofib(lim
𝑛

𝐸𝑛 → 𝐸) (5.1.2)

and call this functor the slice completion of 𝐸∗. Clearly the slice filtration is complete if and 

only if sc(𝐸) ≃ 0.

Definition 5.1.4

1. The algebraic Hopf map is the class 𝜂 ∈ 𝜋1,1(𝕊𝑆) induced by the coordinate map

𝔸2
𝑆 − {0} → ℙ1

𝑆 , (𝑥, 𝑦) ↦ [𝑥 : 𝑦]. (5.1.3)

2. The limit of the sequential tower

… → 𝐸 ∧ cofib(𝜂𝑛+1) → 𝐸 ∧ cofib(𝜂𝑛) → 𝐸 ∧ cofib(𝜂𝑛−1) → … (5.1.4)

is called the 𝜂-completion 𝐸∧
𝜂  of 𝐸.
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We denote 𝒮︀ℋ︀cell(𝑆) to be the smallest subcategory of 𝒮︀ℋ︀(𝑆) which contains 𝕊𝑆  and is closed 

under small colimits. We call this the category of cellular motivic spectra over 𝑆. The slice 

completion is closely related to the 𝜂-completion of a cellular spectrum.

Proposition 5.1.5 [[Man18]. §5.3] Let 𝐸 ∈ 𝒮︀ℋ︀(𝑆) be a cellular spectrum of finite type. Let 𝐸MGL and 

𝐸𝑀ℤ
 be the MGL- and 𝑀ℤ-localization of 𝐸 respectively. Then

sc(𝐸) ≃ 𝐸∧
𝜂 ≃ 𝐸MGL ≃ 𝐸𝑀ℤ

. (5.1.5)

The next theorem establishes the convergence of the slice spectral sequence over certain fields.

Theorem 5.1.6 [[BEØ24], Corollary 5.10] Let 𝑘 be a field of exponential characteristic 𝑒 and 𝑡 > 0 

coprime to 𝑒 such that vcd𝑡(𝑘) < ∞. Suppose 𝐸 ∈ 𝒮︀ℋ︀(𝑘)≥𝑐 for some 𝑐 ∈ ℤ.

1. The map (𝐸∧
𝑡,𝜌)

∗
→ sc(𝐸∧

𝑡,𝜌) is an isomorphism on 𝜋∗,∗.

2. There is a conditionally convergent spectral sequence

𝜋𝑝,𝑛(gr𝑞(𝐸∧
𝑡,𝜌)

∗
) ⟹ 𝜋𝑝,𝑛(𝐸∧

𝑡,𝜌) (5.1.6)

where 𝜌 is the endofunctor of smashing with 𝔾𝑚.

Remark 5.1.7 Suppose cd2(𝑘) < ∞, then 𝜌𝑚 ≃ 0 for some 𝑚, hence, then 𝜌-completion of 𝐸 is 

easy to compute. In fact in this case, for 𝑥 ∈ 𝑋 ∈ 𝒮︀m𝑘 we have

𝜋𝑖,𝑗(𝐸𝑀)
𝑥

= 0 (5.1.7)

for some 𝑀 ≫ 0 and the spectral sequence degenerates.

On taking the global section, the motivic Atiyah-Hirzebruch spectral sequence always con

verges for 𝑘 a perfect field:

Theorem 5.1.8 [[Lev13], Theorem 7.3] Let 𝑘 a perfect field of exponential characteristic 𝑒 with finite 

cohomological dimension. Let ℓ be coprime to 𝑒. Then we have a strongly convergent spectral sequence

𝜋𝑝,𝑛(gr𝑞(𝐸∧
ℓ )∗)(𝑘) ⇒ 𝜋𝑝,𝑛(𝐸∧

ℓ )(𝑘). (5.1.8)

However, as we will see in the next section, the convergence of the Atiyah-Hirzebruch spectral 

sequence associated to 𝕊𝑘 (and MGL) can also be shown by relating it to the convergence of 

classical Adams-Novikov spectral sequences.

5.2 Comparison theorem

Let 𝑘 be an algebraically closed field of characteristic zero. Fix an embedding 𝜎 : 𝑘 ↪︎ ℂ and let 

Reℂ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀ be the associated complex Betti realization functor.

The goal of this section is to reprove the main result of [Lev15], which, adapted to our notations, 

has the following formulation:
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Theorem 5.2.1 Consider the Adams-Novikov spectral sequence

𝐸𝑠,𝑡
2 (𝐴𝑁) = Ext𝑠,𝑡

MU∗(MU)(MU∗, MU∗) ⟹ 𝜋𝑡−𝑠𝕊 (5.2.1)

and the motivic Atiyah-Hirzebruch spectral sequence

𝐸𝑝,𝑞
1 (𝐴𝐻) = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘). (5.2.2)

Then there is an isomorphism

𝛾𝑝,𝑞
1 : 𝐸𝑝,𝑞

1 (𝐴𝐻) ≅ 𝐸3𝑝+𝑞,2𝑝
2 (𝐴𝑁) (5.2.3)

which induces a sequence of isomorphisms of complexes for 𝑟 ≥ 1

⊕𝑝,𝑞 𝛾𝑝,𝑞
𝑟 : (⊕𝑝,𝑞 𝐸𝑝,𝑞

𝑟 (𝐴𝐻), 𝑑𝑟) → (⊕𝑝,𝑞 𝐸3𝑝+𝑞,2𝑝
2𝑟+1 (𝐴𝑁), 𝑑2𝑟+1). (5.2.4)

To establish the isomorphism at 𝐸1-page, one proves the following key lemma.

Lemma 5.2.2 The Betti realization functor gives an isomorphism

Re(gr[𝑎,𝑏)𝕊⋆
𝑘) ≅ gr[2𝑎,2𝑏)Dec∙(MU∧∗+1) (5.2.5)

where Dec is the décalage functor introduced in §2.3.

Proof. We first notice the Postnikov tower on MU can be applied termwise on cosimplicial 

spectrum 𝑠 ↦ MU∧𝑠+1 and incudes a filtration on it. (note here this filtration is indeed complete 

by Example 2.1.7).

Since Reℂ is an exact symmetric monoidal functor, it preserves cofiber sequences. By Theorem 

4.4.1 and Corollary 4.4.2, we have an isomorphism

Reℂ(colim𝑠≤𝑁Tot𝑠gr[𝑎,𝑏)MGL∧∗+1) ≅ colim𝑠≤𝑁Tot𝑠𝜏Б

≥2𝑎𝜏Б

≤2𝑏MU∧∗+1. (5.2.6)

We still need to calculate the left side to get rid of the colimit. We observe this follows from 

the descendability of gr[𝑎,𝑏)𝕊∗
𝑘 → gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1: Indeed, descendability implies an equiv

alence

gr[𝑎,𝑏)𝕊∗
𝑘 ≃ Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1 (5.2.7)

in 𝒮︀ℋ︀(𝑘) = Mod𝕊𝑘
. Now take 𝑁 = ∞ and by definition of décalage functor, we have the 

desired result. □
Therefore, we reduce to show:

Lemma 5.2.3 Let 𝑎 ≤ 𝑏 ≤ 𝑠 + 1, denote 𝜄∗𝑠 : Δ≤𝑠 ↪︎ Δ the inclusion of simplicial sets and (𝜄𝑠)∗ its 

right adjoint. Then gr[𝑎,𝑏)𝕊∗
𝑘 → gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1 is ℰ︀∞-descendable.

Proof. The unit map c𝕊𝑘 → MGL∧∗+1 induces a map 𝕊𝑘 → holimΔ≤𝑠(𝜄𝑠)∗MGL∧∗+1 since 

holim(𝜄𝑠)∗𝕊𝑘 ≅ 𝕊𝑘. On the other hand, there is an equivalence

holimΔ≤𝑠(𝜄𝑠)∗MGL∧∗+1 ≃ Tot𝑠(𝜄𝑠)∗MGL∧∗+1 (5.2.8)
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by definition. We now show gr[𝑎,𝑏)𝕊∗
𝑘 ≅ Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1, which, in light of Proposition 

6.8.2, suffices to construct a retraction from Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1 to gr[𝑎,𝑏)𝕊∗
𝑘.

We show cofib(gr[𝑎,𝑏)𝕊∗
𝑘 → Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1) = 0. For this, notice that by Theorem 4.2.1 

gr0𝕊∗
𝑘 ≅ gr0MGL∗ ≃ 𝑀ℤ. Let MGL be the cofiber of 𝕊𝑘 → MGL, then it follows that MGL1 =

MGL, thus (MGL∧𝑠+1)
𝑠+1

= MGL∧𝑠+1, and we have

(Ω𝑠MGL∧𝑠+1)
𝑠+1

≅ Ω𝑠MGL∧𝑠+1. (5.2.9)

Hence for 𝑎 ≤ 𝑏 ≤ 𝑠 + 1

gr[𝑎,𝑏)(Ω𝑠MGL∧𝑠+1)
⋆

= 0. (5.2.10)

The following fiber sequence is well known [[Lur17], §4.7.2]:

Ω𝑠MGL∧𝑠+1 → Tot𝑠MGL∧∗+1 → Tot𝑠−1MGL∧∗+1 (5.2.11)

and after truncation to ((𝜄)𝑠)∗MGL∧∗+1 we have a cofiber sequence

𝕊𝑘 ≃ Tot𝑠−1((𝜄)𝑠)∗MGL∧∗+1 → Tot𝑠((𝜄)𝑠)∗MGL∧∗+1 → Ω𝑠MGL∧𝑠+1. (5.2.12)

Then we conclude by taking the associated graded pieces. □
Proof of Theorem 5.3.1. Since 𝑎 and 𝑏 in Lemma 5.2.2 are arbitrary, we have an isomorphism of 

the slice spectral sequences associated to two filtrations Re(𝕊⋆
𝑘) and Dec∙(MU∧∗+1), where all 

the odd homotopy groups of MU∧𝑠+1 vanish.

On the other hand, the realization functor induces an isomorphism

𝜋𝑛,0(gr[𝑎,𝑏)𝕊⋆
𝑘)(𝑘) ≅ 𝜋𝑛(Re(gr[𝑎,𝑏)𝕊⋆

𝑘)) (5.2.13)

by Theorem 4.4.5, whence the first spectral sequence is just 𝐸(𝐴𝐻) by definition. This, after a 

change of 𝐸2-spectral sequence to 𝐸1-spectral sequence, yields

𝐸𝑝,𝑞
𝑟 (𝐴𝐻) ≅ 𝐸2𝑝,𝑞−𝑝

2𝑟−1 (Dec(MU∧∗+1)) ≅ 𝐸2𝑝,𝑞−𝑝
2𝑟 (Dec(MU∧∗)). (5.2.14)

Now by Theorem 2.3.12:

𝐸2𝑝,𝑞−𝑝
2𝑟 (Dec(MU∧∗)) ≅ 𝐸3𝑝+𝑞,−2𝑝

2𝑟+1 (MU∧∗) = 𝐸3𝑝+𝑞,2𝑝
2𝑟+1 (𝐴𝑁) (5.2.15)

where the last change of indices is from the Cartan-Eilenberg indexing convention to the one 

of Bousfield-Kan, which is common for the Adams-Novikov spectral sequence. □

Corollary 5.2.4 Fix a prime ℓ and the associated Brown-Peterson spectrum BP(ℓ). Then there is an 

isomorphism of the ℓ-local Adams-Novikov spectral sequence

𝐸𝑠,𝑡
2 (𝐴𝑁)ℓ = Ext𝑠,𝑡

BP(ℓ)
∗ (BP(ℓ))(BP(ℓ)

∗ , BP(ℓ)
∗ ) ⟹ 𝜋𝑡−𝑠𝕊 ⊗ ℤ(ℓ) (5.2.16)

and the ℓ-local motivic Atiyah-Hirzebruch spectral sequence

𝐸𝑝,𝑞
1 (𝐴𝐻)ℓ = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⊗ ℤ(ℓ) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘) ⊗ ℤ(ℓ). (5.2.17)

induced by the complex Betti realization.
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Proof. As of Definition 3.4.14, BP(ℓ)
mot is a direct summand of MGL(ℓ) so it lies in 𝒮︀ℋ︀eff(𝑘). 

Moreover, by Theorem 4.2.1 and Corollary 4.2.7 we have

gr0𝕊∗
𝑘 ⊗ ℤ(ℓ) ≃ gr0MGL∗ ⊗ ℤ(ℓ) ≃ gr0BP(𝑙)

mot (5.2.18)

and therefore the argument in Lemma 5.2.3 can be applied and the unit map 𝕊∗
𝑘 ⊗ ℤ(ℓ) → BP(ℓ)

mot 

induces a descent on grading pieces. Finally by Corollary 4.4.3 we have

Re(gr[𝑎,𝑏)(𝕊𝑘 ⊗ ℤ(ℓ))
⋆
) ≅ gr[2𝑎,2𝑏)Dec∙((BP(ℓ))∧∗+1) (5.2.19)

and the rest is analogue. □

Remark 5.2.5 This isomorphism of spectral sequences has a conceptual interpretation: In 

[Pst23] it was shown that

𝒮︀ℋ︀cell(ℂ)∧
𝑝 ≃ Syn∧

𝑝 (5.2.20)

where Syn represents the category of synthetic spectra as constructed in [[Pst23], §4.1], which 

is a way to encode the Adams-Novikov spectral sequence using a one-parameter deformation 

of 𝒮︀ℋ︀. In [Ghe+22], another attempt of categorification of the Adams-Novikov spectral 

sequence is to introduce Γ∗𝟙-modules of filtered spectra: this shares the same spirit as décalage 

introduced by Antieau later (see [[Ghe+22], Remark 3.7]). Nevertheless, the two constructions 

turned out to be equivalent [[Pst25], Theorem 7.5]: they are both related to the concept of even 

filtrations, which is a purely topological construction.

Since MGL is cellular, this equivalence reveals that over ℂ, the behavior of MGL-modules 

should be purely topological under some mild finiteness conditions. In fact, the étale case 

suggests that more should be true over arbitrary algebraic closed fields, though we don’t know 

how to precisely state that, since cellularity is not closed under infinite limits, in particular, 

completions.

5.3 A spectral sequence of étale cobordism

We now turn our attention to the ℓ-adic case. We fix an algebraically closed field of characteristic 

𝑝 and a prime ℓ ≠ 𝑝. In this section we may replace 𝕊𝑘 by 𝕊𝑘[1/𝑝] in order to use the Hopkins-

Morel theorem Theorem 4.2.1.

Unlike the characteristic zero case, the completed spectra does not always behave well under 

realization since it is an infinite limit. However, the main theorem of [Elm+22] gives us a 

possible approach.

Recall we have built our motivic spaces out of Nisnevich sheaves of smooth schemes. Since 

étale site is finer that Nisnevich site, there is not obstruction to define an étale version of 

stable motivic homotopy category, of which we denote 𝒮︀ℋ︀ét(𝑆). This category turns out to 

be a non-full localization of 𝒮︀ℋ︀(𝑆). The identity functor id : 𝒮︀m𝑆 → 𝒮︀m𝑆  induces a geometric 

morphism of ∞-topoi
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𝜀∗ : Shv∧
ét(𝒮︀m𝑆) → ShvNis(𝒮︀m𝑆) (5.3.1)

with a left adjoint 𝜀∗. This adjunction descends to

𝜀∗ : 𝒮︀ℋ︀(𝑆) ⇄ 𝒮︀ℋ︀ét(𝑆) : 𝜀∗ (5.3.2)

By construction, there is a canonical isomorphism of motivic cohomology:

𝐻0,1(Spec 𝑘; ℤ/𝑛) ≃ 𝜇𝑛(𝑘). (5.3.3)

Now let 𝜁 be a primitive 𝑛-th roots of unity in 𝑘, and let 𝛽𝑛 be the associated element of 

𝐻0,1(Spec 𝑘; ℤ/𝑛). As in [[Hoy15], 8.14], the spectral sequence

𝐻𝑝+2𝑡,𝑞+𝑡(𝑘; ℤ/𝑛) ⊗ 𝐿𝑡[1/𝑝] ⟹ MGL𝑝,𝑞(𝑘)[1/𝑝] (5.3.4)

sends 𝛽𝑛 to an element in MGL0,1(𝑘; ℤ/𝑛), which we call motivic Bott element. As explained 

in [Elm+22], the element 𝛽ℓ𝑣  actually lives in (MGL/ℓ𝑣)0,𝑁(𝑘) for some 𝑁 , and the formal 

inversion with respect to 𝛽ℓ𝑣  is independent on the choice of the root of unity 𝜁.

Proposition 5.3.1 [[Elm+22], Theorem 6.26] For any 𝑣 ≥ 1 The unit of the adjunction (5.3.2) induces 

an equivalence of spectra

MGL/ℓ𝑣[𝛽−1
ℓ𝑣 ] →≃ MGLét/ℓ𝑣 (5.3.5)

where MGLét ≔ 𝜀∗𝜀∗(MGL) the étale localization of algebraic cobordism.

Remark 5.3.2 In [Qui07] this étale localization of algebraic cobordism is identified with his étale 

cobordism spectrum after étale realization. This explains the title of this section.

From this proposition and Theorem 5.1.8, an argument of slice spectral sequences yields:

Theorem 5.3.3 [[Elm+22], Proposition 7.11, [Qui07], Theorem 64] There is an isomorphism of graded 

abelian groups induced by étale realization:

(⨁
𝑝,𝑞

MGL𝑝,𝑞(𝑘) ⊗ ℤℓ)[𝛽−1] ≅ ⨁
𝑝

(MU∧
ℓ )𝑝[𝛽−1] (5.3.6)

where 𝛽 is the collection of 𝛽ℓ𝑣  for all 𝑣 ≥ 1.

More generally, this isomorphism works for all Landweber exact theories as pointed out by 

[[Elm+22], Proposition 7.12]. This allows us to prove the following theorem:

Theorem 5.3.4 Replace all spectra with Bott inverted version. Let MU∧
ℓ  be the ℓ-adic completion of 

complex cobordism spectrum. The Adams-Novikov spectral sequence

𝐸𝑝,𝑞
2 (𝐴𝑁)∧

ℓ = Ext𝑠,𝑡
MU∧

ℓ,∗(MU∧
ℓ)(MU∧

ℓ,∗, MU∧
ℓ,∗) ⟹ (𝜋𝑡−𝑠𝕊)∧

ℓ (5.3.7)

converges and is isomorphic to the ℓ-complete Atiyah-Hirzebruch spectral sequence

𝐸𝑠,𝑡
1 (𝐴𝐻)∧

ℓ = 𝜋−𝑠−𝑡,0(gr−𝑡𝕊∗
𝑘[1/𝑝])(𝑘) ⊗ ℤℓ ⟹ 𝜋−𝑠−𝑡,0(𝕊𝑘[1/𝑝])(𝑘) ⊗ ℤℓ (5.3.8)

with isomorphisms induced by the étale realization functor. In other words, there is an isomorphism
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(𝜋𝑠+𝑡,0(𝕊𝑘[1/𝑝])(𝑘))∧
ℓ
[𝛽−1] ≅ (𝜋𝑠+𝑡𝕊)∧

ℓ
[𝛽−1] (5.3.9)

Proof. By Theorem 5.1.8 the second spectral sequence is convergent, hence it suffices to show 

the isomorphism as stated.

The argument in Lemma 5.2.3 for

𝕊𝑘 ⊗ ℤℓ → MGL ⊗ ℤℓ (5.3.10)

gives us the descent object. By Theorem 5.3.3, an isomorphism

𝜋∗,∗(gr𝑠𝕊∗
𝑘[1/𝑝])(𝑘)[𝛽−1] ⊗ ℤℓ ≅ 𝜋∗(gr2𝑠Dec∙((MU∧

ℓ )∧∗+1))[𝛽−1]. (5.3.11)

The two filtrations agree globally after inverting Bott element, even though we can’t say 

anything else over arbitrary section! Now the usual décalage trick can be applied. □

Remark 5.3.5 After finishing this thesis, we notice that our result has a partial overlapping with 

the main result in [[BBX25], Theorem 8.3], where they compared the motivic stable stem over 

any field with the one over ℂ. Concretely they proved the following isomorphism of derived 

complete modules of 𝐾𝑀𝑊
∗ (ℂ)∧

ℓ,𝜂:

𝜋∗,∗(𝕊∧
ℓ,𝜂)(𝑘) ≃ 𝐾𝑀𝑊

∗ (𝑘)∧
ℓ,𝜂 ⊗̂ 𝜋∗,∗(𝕊∧

ℓ,𝜂)(ℂ) (5.3.12)

where they only assumed 𝑘 to be Tate-orientable, i.e. contains 𝜇ℓ𝑛  for all 𝑛.

6 Appendix: Higher category theory

We will collect and quickly go through most category theoretical languages used in this thesis, 

especially the ∞-category, which might not be familiar to some readers.

6.1 Definition of (∞, 1)-category

There’re many approaches to introduce higher and ∞-categories, perhaps the best one with a 

balance of combinatorial background and transparency is the theory of quasicategories (resp. 

weak Kan complexes).

Definition 6.1.1 The simplex category Δ is the category of non-empty finite totally ordered sets 

and order-preserving maps between them. Typically every object in Δ is isomorphic to [𝑛] =
{0 ≤ 1 ≤ 2 ≤ … ≤ 𝑛} for some 𝑛 and isomorphisms are unique if exists.

Definition 6.1.2 Let 𝒞︀ be a category, a simplicial object in 𝒞︀ is a functor Δop → 𝒞︀. Similarly a 

cosimplicial object is a functor Δ → 𝒞︀. In particular, a simplicial set is a functor Δop → Set. The 

functor category of all simplicial objects in 𝒞︀ is denoted by 𝒞︀Δ.
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Definition 6.1.3 The 𝑖-th face map 𝑑𝑖 : [𝑛 − 1] → [𝑛] is the unique morphism whose image 

doesn’t contain 𝑖, and the 𝑖-th degeneracy maps 𝑠𝑖 : [𝑛 + 1] → [𝑛] is the unique morphism 

whose image hits 𝑖 twice.

Remark 6.1.4 It’s easy to see every morphism in Δ can be written in a composition of face maps 

and degeneracy maps. In light of this observation, we may identify a simplicial object 𝑆 in 𝒞︀ 

as following data:

1. for each 𝑛 ≥ 0 an object 𝑆𝑛 and

2. for each 𝑖 the (pullback) 𝑑𝑖 : 𝑆𝑛−1 → 𝑆𝑛 (of) face maps and 𝑠𝑖 : 𝑆𝑛+1 → 𝑆𝑛 of degeneracy 

maps.

Definition 6.1.5 For every natural number 𝑛, the 𝑛-simplex Δ𝑛 is defined to be the simplicial 

set represented by the object [𝑛] as with the Yoneda lemma. For each 𝑛-complex where 𝑛 ≥ 1 

and let 0 ≤ 𝑘 ≤ 𝑛, we define the 𝑘-th horn of Δ𝑛 to be the simplicial set Λ𝑛
𝑘 ⊂ Δ𝑛 as the union 

of all faces except 𝑘-th in Δ𝑛.

Remark 6.1.6 For every topological space 𝑋, we may associate the singular simplicial complex 

Sing(𝑋) to it as in algebraic topology. This defines a functor Top → 𝒮︀etΔ and it admits a left 

adjoint, which assigns a geometric realization |𝑆| to each simplicial set 𝑆, which is left Kan 

extended from the functor [𝑛] ↦ Δ𝑛.

The ability to extend maps out of horns to maps out of simplices is a criterion for homotopy 

coherence.

Definition 6.1.7 Let 𝐾 be a simplicial set, we say:

1. 𝐾 is a Kan complex if for each 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛, every morphism of simplicial sets Λ𝑛
𝑘 →

𝐾 can be extended to a morphism Δ𝑛 → 𝑋.

2. 𝐾 is a quasicategory if the above condition holds just for 0 < 𝑘 < 𝑛.

Example 6.1.8

1. The singular complex Sing(𝑋) of a topological space is a Kan complex 𝑋.

2. Let 𝒞︀ be a small 1-category, the nerve of 𝒞︀ is defined as the following simplicial set: for each 

𝑛 ≥ 0, N(𝒞︀)𝑛 is the set of functors [𝑛] → 𝒞︀, i.e. the chain

𝐶0 ⟶
𝑓1

𝐶1 ⟶
𝑓2

𝐶2 → … ⟶
𝑓𝑛

𝐶𝑛 (6.1.1)

the pull back of 𝑗-th face map sends this to

𝐶0 ⟶
𝑓1

𝐶1 → …𝐶𝑗−1 ⟶⟶⟶⟶⟶⟶⟶⟶
𝑓𝑗+1∘𝑓𝑗

𝐶𝑗+1 → … ⟶
𝑓𝑛

𝐶𝑛 (6.1.2)

and the pull back of 𝑗-the degeneracy map sends objects in N(𝒞︀)𝑛 to

52



𝐶0 ⟶
𝑓1

𝐶1 → … ⟶
𝑓𝑗

𝐶𝑗 ⟶
id

𝐶𝑗 ⟶
𝑓𝑗

… ⟶
𝑓𝑛

𝐶𝑛. (6.1.3)

The nerve of a category is a quasicategory, but in general not a Kan complex. In fact, only the 

nerve of a groupoid is a Kan complex.

Proposition 6.1.9 [[Lur09], Proposition 1.1.2.2] Let 𝐾 be a simplicial set, then 𝐾 is isomorphic to the 

nerve of a category 𝒞︀ if and only if 𝐾 is a quasicategory and the extension in Definition 6.1.7 is unique. 

Moreover, the functor N : Cat → 𝒮︀etΔ is fully faithful.

The proposition above tells us that the theory of quasicategories is indeed an extension of 

classical category theory. From now on, we will simply refer ∞-category to quasicategory and 

identify the nerve of a 1-category with itself.

Definition 6.1.10

1. Given an ∞-category 𝒞︀, we say a functor Δ0 → 𝒞︀ is an object of 𝒞︀ and Δ1 → 𝒞︀ a morphism 

of 𝒞︀. A morphism 𝑓 : Δ1 → 𝒞︀ has source 𝑑0(𝑓) and target 𝑑1(𝑓). If 𝑋 is an object in 𝒞︀, then 

we refer id𝑋 ≔ 𝑠0(𝑋) to the identity morphism of 𝑋.

2. [Segal axiom] Given two morphisms 𝑓, 𝑔 : Δ1 → 𝒞︀ with 𝑑1(𝑓) = 𝑑0(𝑔), the composition 𝑔 ∘
𝑓 : Δ1 → 𝒞︀ is exhibited as the extension of Λ2

1 → 𝒞︀ to a unique commutative triangle Δ2 →
𝒞︀, where 𝑓, 𝑔 are 0th and 2nd faces respectively.

3. For any two ∞-categories 𝒞︀ and 𝒟︀, we say 𝐹 : 𝒞︀ → 𝒟︀ is a functor of ∞-categories if it is a 

morphism of underlying simplicial sets of 𝒞︀ and 𝒟︀. In general if 𝒞︀ is a simplicial set and 𝒟︀ 

is an ∞-category, then Fun(𝒞︀, 𝒟︀) is also an ∞-category.

Remark 6.1.11 The reader may ask in which purpose we have introduced Kan complex as a 

more strict notation. In fact, one can show the geometric realization of a Kan complex is related 

to a CW-complex, thus Kan complexes share the same homotopy properties like our usual 

understanding of a “space”.

A moderner name for Kan complexes is anima, this was introduced recently by Clausen and 

Scholze. Informally, the reader can understand an anima as a generalization of a set, or a space 

with only homotopy type captured, forgetting the underlying geometry.

In order to prevent being confused by concrete models and constructions, especially the model 

of simplicial sets above, we define the following objects in an axiomatic way:

Definition 6.1.12 There exists two ∞-categories An and Cat∞, called the ∞-category is small 

animae and small ∞-categories, such that:

1. An ↪︎ Cat∞ is fully faithful.
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2. For any object 𝑐 ∈ Cat∞, we can associate an up to equivalence unique small ∞-category 𝒞︀. 

The same holds for An.

We are ready to define the homotopy category of an ∞-category.

Proposition 6.1.13 [[Lur09], Proposition 1.2.3.1] The functor 𝑁 : Cat → Cat∞ has a left adjoint h :
Cat∞ → Cat which sends an ∞-category 𝒞︀ to its homotopy category h𝒞︀.

Remark 6.1.14 Thanks to the extension property of quasicategories, we may have a good 

description of the homotopy category of an ∞-category, using our usual understanding of 

homotopy between maps. The reader may refer to [[Lur09], §1.2.3].

Definition 6.1.15

1. A morphism 𝑓 : Δ1 → 𝒞︀ in a ∞-category 𝒞︀ is said to be an equivalence if it is an isomorphism 

in h 𝒞︀.

2. Let 𝒞︀ be an ∞-category, let 𝒞︀≃ ⊂ 𝒞︀ be the largest simplicial subset such that all morphisms 

in 𝒞︀≃ are equivalences. Then 𝒞︀≃ is an anima and is called the core of 𝒞︀. For any other anima 

𝐾, the functor 𝐾 → 𝒞︀ must factor through 𝒞︀≃.

The Hom-set between two objects in ordinary category now can be extended to a homotopy 

object, called the mapping space in ∞-category.

Definition 6.1.16 Let 𝑆 be a simplicial set, 𝑥, 𝑦 ∈ 𝑆, the mapping space Map𝑆(𝑥, 𝑦) between 𝑥 

and 𝑦 is just the space Maph 𝑆(𝑥, 𝑦) ∈ ℋ︀ in homotopy category, where h 𝑆 denote the homotopy 

category of 𝑆 regarded as a ℋ︀-enriched category.

We do not need to worry too much about the technical details of ℋ︀-enrichment as discussed 

in [Lur09]. What really matters is the following theorem:

Proposition 6.1.17 [[Lur09], Proposition 1.2.2.3] Let 𝒞︀ be an ∞-category, then for any two objects 

𝑥, 𝑦 ∈ 𝒞︀, the mapping space Map𝒞︀(𝑥, 𝑦) is an anima, called the Hom anima of 𝑥, 𝑦 in 𝒞︀.

Using straightening and unstraightening as in [[Lur09], §3.2], one can show that this extends 

to a functor

Hom𝒞︀(−, −) : 𝒞︀op × 𝒞︀ → An (6.1.4)

where 𝒞︀ is an ∞-category and An is the ∞-category of all (small) animae, which is defined in 

Definition 6.1.12.

Definition 6.1.18 For any two objects 𝑐, 𝑑 ∈ Cat∞ corresponding to small ∞-categories 𝒞︀ and 

𝒟︀, there is an equivalence of animae
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HomCat∞
(𝑐, 𝑑) →≃ MapSetΔ

(𝒞︀, 𝒟︀). (6.1.5)

In particular, we can also define the functor category from 𝒞︀ to 𝒟︀ as the ∞-category

Fun(𝒞︀, 𝒟︀) ≔ HomCat∞
(𝑐, 𝑑). (6.1.6)

It’s convenient to have initial and terminal objects regarding to all ∞-categories.

Definition 6.1.19

1. The ∞-category ∗ = [0] is terminal in the sense that for any ∞-category 𝒞︀, there is a 

unique(up to equivalence) functor 𝒞︀ → ∗. The ∞-category ∅ is strict initial in the sense that 

there is a unique functor ∅ → 𝒞︀, and every functor 𝒞︀ → ∅ is necessarily an equivalence.

2. An ∞-category is contractible if 𝒞︀ → ∗ is an equivalence.

3. Let 𝒞︀ be an ∞-category and 𝑥 ∈ 𝒞︀. 𝑥 is said to be an initial object if for any 𝑦 ∈ 𝒞︀, the mapping 

space Map𝒞︀(𝑥, 𝑦) is contractible. Analogously, 𝑥 is a final object if Map𝒞︀(𝑦, 𝑥) is contractible 

for any 𝑦 ∈ 𝒞︀.

We can use the above definition to talk about limits and colimits in ∞-category as in the usual 1
-category. Be careful the uniqueness of these objects are all up to the contractibility of mapping 

spaces.

Finally we introduce two constructions of new ∞-categories: subcategories spanned by mor

phisms and localizations at some morphisms.

Definition 6.1.20

1. A monomorphism between two ∞-categories 𝒞︀, 𝒟︀ is a functor 𝐹 : 𝒞︀ → 𝒟︀ such that

=

= 𝐹
𝐹

𝐶 𝐶

𝐶 𝐷
is a pullback square.

2. Let 𝒞︀ be an ∞-category, a collection of morphisms in 𝒞︀ is a monomorphism 𝑀 ↪︎
Map(Δ1, 𝒞︀) where 𝑀  is another small ∞-category. We say the collection is closed under 

composition if for any 𝑓 : Δ1 → 𝒞︀ in 𝑀  between 𝑥, 𝑦 ∈ 𝒞︀, the morphisms id𝑥, id𝑦 are also in 

𝑀 . If 𝑔 ∈ 𝑀 , then 𝑔 ∘ 𝑓 : Δ1 → 𝒞︀ is also in 𝑀 .

Definition 6.1.21

1. We refer ⟨𝑀⟩𝒞︀ together with a functor 𝑖𝑀 : ⟨𝑀⟩𝒞︀ → 𝒞︀ to the subcategory spanned by 

collection of morphisms 𝑀  in 𝒞︀, where 𝑀  is closed under composition, if the following 

conditions hold:

1. The induced functor (𝑖𝑀)∗ : Fun(Δ1, ⟨𝑀⟩𝒞︀) → Fun(Δ1, 𝒞︀) factors through 𝑀 .
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2. For any ∞-category 𝒟︀, we have a pullback square

Fun(𝒟︀, ⟨𝑀⟩𝒞︀) Fun(𝒟︀, 𝒞︀)

Fun(Fun(Δ1, 𝒟︀), 𝑀) Fun(Fun(Δ1, 𝒟︀), Fun(Δ1, 𝒞︀)).
2. Let Γ ↪︎ 𝒞︀≃ be an embedding of ∞-categories. Let ev1 : Fun(Δ1, 𝒞︀) → 𝒞︀≃ × 𝒞︀≃ be the map 

extracting source and target objects of a morphism, Set 𝑀Γ to be the pullback of ev1 and 

inclusion Γ × Γ ↪︎ 𝒞︀≃ × 𝒞︀≃. We say ⟨𝑀Γ⟩𝒞︀ is the full subcategory spanned by objects in Γ 

in 𝒞︀.

Another construction is localization, where we invert certain family of morphisms.

Definition 6.1.22

1. Let 𝒞︀ be an ∞-category, let 𝑊 ↪︎ Fun(Δ1, 𝒞︀) be a collection of morphisms. An ∞-category 

𝒞︀[𝑊−1] together with a functor 𝑙 : 𝒞︀ → 𝒞︀[𝑊−1] is called the Dwyer-Kan localization of 𝒞︀ at 

the morphisms in 𝑊  if the following conditions hold:

1. The functor 𝑙 sends the morphisms in 𝑊  into equivalences in 𝒞︀[𝑊−1].
2. For any ∞-category 𝒟︀ we have a pullback square

Fun(𝒞︀[𝑊−1], 𝒟︀) Fun(𝒞︀, 𝒟︀)

Fun(𝑊, Iso(𝒟︀)≃) Fun(𝑊, Fun(Δ1, 𝒟︀)).
where Iso(𝒟︀) is the subcategory spanned by all equivalences in 𝒟︀.

2. In case 𝑊  is the collection of all morphisms, we call the localization the geometric realization 

of 𝒞︀ and denoted by |𝒞︀|, it is an anima by definition.

The localization of Top with respect to all weak equivalences is equivalent to An. This is exactly 

the content of the homotopy hypothesis due to Grothendieck.

6.2 Stable ∞-category

We introduce the notion of stable ∞-categories. We show the homotopy category of a stable ∞-

category is always a triangulated category. We will also discuss 𝑡-structures on these homotopy 

categories.

Definition 6.2.1 An ∞-category 𝒞︀ is pointed if there is a object 0 serving as the initial and 

terminal objects at the same time.

Remark 6.2.2 There is a canonical way to equip a minimal pointed structure 𝒞︀∗ on an ∞-

category 𝒞︀ with a terminal object ∗ by the pullback square
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ev0

∗

𝒞︀∗ Fun([1], 𝒞︀)

∗ 𝒞︀

⯾

Readers that have knowledge of algebraic topology may be familiar with following construc

tions:

Definition 6.2.3 Let 𝒞︀ be a pointed ∞-category, a null sequence(or triangle) in 𝒞︀ is a commu

tative square

𝑓

𝑔

𝑋 𝑌

0 𝑍
Such a sequence is called:

1. a fiber sequence if it is a pullback square in 𝒞︀ and we write 𝑋 ≃ fib(𝑔),
2. a cofiber sequence if it is a pushout square in 𝒞︀ and we write 𝑍 ≃ cofib(𝑓).

There are some special fibers and cofibers which deserve a name:

Definition 6.2.4 Let 𝒞︀ be a pointed ∞-category,

1. suppose 𝒞︀ admits fibers, then the fiber of the unique map 0 → 𝑋 is the loop object Ω𝑋 of 

𝑋, this defines a functor Ω : 𝒞︀ → 𝒞︀.

2. suppose 𝒞︀ admits cofibers, then the cofiber of the unique map 𝑋 → 0 is the suspension 

object Σ𝑋 of 𝑋, this defines a functor Σ : 𝒞︀ → 𝒞︀.

Remark 6.2.5 We are not following the strict treatment of ∞-category in the sense of §6.1 and 

[Lur09]. Strictly speaking, the uniqueness here is up to contractibility of mapping spaces. A 

much more formal definition of theses two functors can be found in [Lur17].

Proposition 6.2.6 Let 𝒞︀ be a pointed ∞-category that admits fibers and cofibers, then the suspension 

functor Σ : 𝒞︀ → 𝒞︀ is left adjoint to Ω : 𝒞︀ → 𝒞︀.

We are ready to define stable ∞-categories.

Definition 6.2.7 Let 𝒞︀ be a pointed ∞-category, then 𝒞︀ is a stable ∞-category if 𝒞︀ admits fibers 

and cofibers, and a null sequence is a fiber sequence iff it is a cofiber sequence.

One can check that there are following equivalent definitions of stable ∞-categories.
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Proposition 6.2.8 For a pointed ∞-category 𝒞︀ the following are equivalent:

1. 𝒞︀ is stable.

2. 𝒞︀ admits finite limits and colimits, and a commutative square is a pullback square iff it is a pushout 

square, i.e. an exact square.

3. 𝒞︀ admits fibers and the loop functor Ω : 𝒞︀ → 𝒞︀ is an equivalence.

4. 𝒞︀ admits cofibers and the suspension functor Σ : 𝒞︀ → 𝒞︀ is an equivalence.

Proof. see e.g. [[Cno25], Theorem 3.2.7]. □
An immediate consequence of Proposition 6.2.8 is:

Corollary 6.2.9 The homotopy category of every stable ∞-category is additive.

We now install a triangulated structure on the underlying homotopy category h 𝒞︀ of a stable ∞
-category 𝒞︀. For this, let us briefly review the theory of triangulated category and 𝑡-structures.

Let 𝐾 be an additive category with an endofunctor [1] : 𝐾 → 𝐾, called the suspension functor. 

A triangle in an additive category 𝐾 is a tuple (𝑋, 𝑌 , 𝑍, 𝑢, 𝑣, 𝑤) where 𝑢 : 𝑋 → 𝑌 , 𝑣 : 𝑌 → 𝑍, 𝑤 :
𝑍 → 𝑋[1].
𝐾 is said to be a triangulated category if there’s a collection of distinguished triangles 

(𝑋, 𝑌 , 𝑍, 𝑢, 𝑣, 𝑤) that fulfils following properties:

TR0. Every triangle that is isomorphic to a distinguished triangle is automatically distin

guished.

TR1. The triangle (𝑋, 𝑋, 0, 1𝑋, 0, 0) is distinguished.

TR2. Every morphism 𝑢 : 𝑋 → 𝑌  embeds into a distinguished triangle (𝑋, 𝑌 , 𝑍, 𝑢, 𝑣, 𝑤).
TR3. The triangle (𝑋, 𝑌 , 𝑍, 𝑢, 𝑣, 𝑤) is a distinguished triangle iff (𝑌 , 𝑍, 𝑋[1], 𝑣, 𝑤, −𝑢[1]) is.

TR4. Every commutative square

𝑢

𝑢′

𝑋 𝑌

𝑋′ 𝑌 ′

embeds into a morphism of distinguished triangles.

TR5. (octahedral axiom) Given three distinguished triangles

𝑋 ⟶
𝑢

𝑌 → 𝑍′ → 𝑋[1]

𝑌 ⟶
𝑣

𝑍 → 𝑋′ → 𝑌 [1]

𝑋 ⟶
𝑣𝑢

𝑍 → 𝑌 ′ → 𝑋[1]

(6.2.1)

there’s a distinguished triangle

𝑍′ ⟶
𝑤

𝑌 ′ → 𝑋′ → 𝑍′[1] (6.2.2)
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which completes the octahedral diagram.

𝑢 𝑣

𝑣𝑢

𝑤

𝑋 𝑌 𝑍

𝑍′ 𝑋′

𝑌 ′

We can define 𝑡-structure on a triangulated category: Let 𝐾≥0 and 𝐾≤0 be two strict full 

subcategories of 𝐾. The pair (𝐾≥0, 𝐾≤0) is a 𝑡-structure on 𝐾 if

1. for 𝑋 ∈ 𝐾≤0 and 𝑌 ∈ 𝐾≥0, Hom𝐾(𝑋, 𝑌 [1]) = 0,

2. 𝐾≥0[1] ⊂ 𝐾≥0 and 𝐾≤0[−1] ⊂ 𝐾≤0,

3. for any 𝑋 ∈ 𝐾 there’s a distinguished triangle

𝑌 → 𝑋 → 𝑍 (6.2.3)
with 𝑌 ∈ 𝐾≤0 and 𝑍 ∈ 𝐾≥0[1].

The heart of a 𝑡-structure (𝐾≥0, 𝐾≤0) on 𝐾 is the full subcategory 𝐾♡ = 𝐾≥0 ∩ 𝐾≤0 and it is an 

abelian category.

By playing a little bit with the axioms, we see the inclusion 𝐾≤𝑛 ≔ 𝐾≤0[𝑛] ↪︎ 𝐾 has a right 

adjoint 𝜏≤𝑛 : 𝐾 → 𝐾≤𝑛, similarly, the inclusion 𝐾≥𝑛 ≔ 𝐾≥0[𝑛] ↪︎ 𝐾 has a left adjoint, which 

we write 𝜏≥𝑛 : 𝐾 → 𝐾≥𝑛.

Definition 6.2.10 Let 𝒞︀ be a pointed ∞-category admits cofibers, a triangle (𝑋, 𝑌 , 𝑍, 𝑓, 𝑔, ℎ) in 

h𝒞︀ is said to be distinguished if there exists a diagram in 𝒞︀

𝑓

𝑔
ℎ̃

𝑋 𝑌 0

0 𝑍 𝑊
where 𝑓  and 𝑔 represents 𝑓  and 𝑔, such that both squares are pushout diagrams in 𝒞︀ and the 

map ℎ : 𝑍 → Σ𝑋 is the composition of ℎ̃ and the isomorphism 𝑊 ≃ Σ𝑋 determined by outer 

rectangle.

In a stable ∞-category there’s a even simpler characterization.

Definition 6.2.11 For a stable ∞-category 𝒞︀ the general shifting functor [𝑛] : 𝒞︀ → 𝒞︀ is defined 

by

[𝑛] = {
Σ𝑛 if 𝑛 ≥ 0
Ω−𝑛 if 𝑛 ≤ 0

(6.2.4)

Note that [𝑚] ∘ [𝑛] ≃ [𝑚 + 𝑛] and [0] ≃ id𝒞︀.
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Definition 6.2.12 Let 𝑋, 𝑌 , 𝑍 ∈ 𝒞︀ a stable ∞-category, we say the sequence 𝑋 ⟶
𝑓

𝑌 ⟶
𝑔

𝑍 is 

exact iff

𝑓

𝑔

𝑋 𝑌

0 𝑍
is an exact square.

Since [𝑛] is an equivalence, it preserves finite limits and finite colimits, thus also exact squares. 

By induction and pasting law of pullback and pushout [[Lur09], Lemma 4.4.2.1] we have the 

following proposition.

Proposition 6.2.13 If 𝑋 ⟶
𝑓

𝑌 ⟶
𝑔

𝑍 is an exact sequence in a stable ∞-category 𝒞︀, then:

1. 𝑌 ⟶
𝑔

𝑍 → 𝑋[1] and 𝑍[−1] → 𝑋 ⟶
𝑓

𝑌  are also exact.

2. For every integer 𝑛, the sequence 𝑋[𝑛] ⟶⟶⟶⟶
𝑓[𝑛]

𝑌 [𝑛] ⟶⟶⟶⟶
𝑔[𝑛]

𝑍[𝑛] is exact.

Proposition 6.2.14 For 𝒞︀ a stable ∞-category a triangle (𝑋, 𝑌 , 𝑍, 𝑓, 𝑔, ℎ) is distinguished iff there are 

morphisms 𝑓, 𝑔 in 𝒞︀ representing 𝑓, 𝑔 such that 𝑋 ⟶
𝑓

𝑌 ⟶
𝑔

𝑍 is an exact sequence and the map ℎ̃ :
𝑍 → 𝑋[1] from pasting law [[Lur09], Lemma 4.4.2.1] represents ℎ.

Theorem 6.2.15 Let 𝒞︀ be a stable ∞-category, the shifting functor together with distinguished triangles 

defined in Definition 6.2.12 forms a triangulated structure on h𝒞︀.

Proof. By Corollary 6.2.9 h𝒞︀ is an additive category. It suffices to verify axioms of triangulated 

category.

TR0 and TR1 is obvious.

TR2 follows from the fact that if 𝒞︀ is a stable category, then 𝒞︀ admits cofibers. Pick 𝑓  repre

senting 𝑓 : 𝑋 → 𝑌  in 𝒞︀, then (𝑋, 𝑌 , cofib(𝑓), 𝑓, 𝑔, ℎ) is distinguished where 𝑔 is the homotopy 

class of 𝑔 : 𝑌 → cofib(𝑓) in 𝒞︀ and ℎ is canonical.

TR3 is exactly Proposition 6.2.13.

TR4. Suppose we have a diagram

𝑓

𝑓 ′

𝑋 𝑌

𝑋′ 𝑌 ′

representing the diagram in h𝒞︀, this can be extended to a diagram
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𝑓

𝑓 ′

𝑋 𝑌 cofib(𝑓) 𝑋[1]

𝑋′ 𝑌 ′ cofib(𝑓 ′) 𝑋′[1]
since

𝑓
𝑋 𝑌

0 cofib(𝑓)
is a pushout diagram.

TR5. In view of the fact that every two cofibers are uniquely determined up to isomorphism, it 

suffices to construct a cofiber sequence fits into the stronger commutative diagram in 𝒞︀, which 

leads to

𝑓 𝑔
𝑋 𝑌 𝑍 0

0 𝑍′ 𝑌 ′ 𝑋[1] 0

0 𝑋′ 𝑌 [1] 𝑍′[1]

The sequence 𝑍′ → 𝑌 ′ → 𝑋′ is exact by repeated use of the pasting law. □

Remark 6.2.16 The notion of stability of an ∞-category is purely intrinsic: we do not need 

to equip extra structures on it. So is the triangulated structure on its homotopy category. In 

fact, it is completely harmless to forget the axioms of triangulated categories and only treat 

them as the homotopy category of some stable ∞-categories! Although not properly justified 

in a chronological order, the triangulated category resembles the stable ∞-category in a usual 

homotopy category, where most of homotopical information is lost.

If 𝒞︀ is a stable ∞-category, then the way of putting a 𝑡-structure on its homotopy category is 

closely related to certain localizations on 𝒞︀.

Definition 6.2.17 Let 𝒞︀ be a stable ∞-category, we say 𝒞︀ is equipped with a 𝑡-structure if h𝒞︀ 

is equipped with such one. Accordingly we let 𝒞︀≤𝑛 and 𝒞︀≥𝑛 be those full subcategories of 𝒞︀ 

spanned by the objects in (h𝒞︀)≤𝑛 and (h𝒞︀)≥𝑛.

From the definition we have immediately the following proposition:
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Proposition 6.2.18 Let 𝒞︀ be a stable ∞-category equipped with a 𝑡-structure. For every 𝑛 ∈ ℤ, 𝒞︀≤𝑛 is 

a localization of 𝒞︀.

Corollary 6.2.19 Let 𝒞︀ be a stable ∞-category equipped with a 𝑡-structure. The full subcategories 𝒞︀≤𝑛 

are stable under all limits which exist in 𝒞︀. Dually the subcategories 𝒞︀≥𝑛 are stable under all colimits 

which exist in 𝒞︀.

However, not every localization of 𝒞︀ is related to a 𝑡-structure.

Definition 6.2.20 Let 𝒞︀ be an ∞-category admits pushouts. A collection of morphisms 𝑆 is 

quasisaturated if the following conditions are satisfied:

1. Every equivalence in 𝒞︀ belongs to 𝑆.

2. Given a 2-simplex Δ2 → 𝒞︀, if any two of faces belong to 𝑆, so does the third.

3. Given a pushout

𝑓 𝑓 ′

𝑋 𝑋′

𝑌 𝑌 ′

if 𝑓 ∈ 𝑆, then 𝑓 ′ ∈ 𝑆.

For each collection of morphisms 𝑆, there exists a smallest quasisaturated collection 𝑆 contain

ing 𝑆. We call it generated by 𝑆.

Example 6.2.21 Let 𝒞︀ be an ∞-category admits pushouts, let 𝐿 : 𝒞︀ → 𝒞︀ be a localization functor. 

Let 𝑆 be the collection of morphisms 𝑓  such that 𝐿(𝑓) is an equivalence. Then 𝑆 is quasisat

urated.

Definition 6.2.22 Let 𝒞︀ be a stable ∞-category, a full subcategory 𝒞︀′ ⊂ 𝒞︀ is closed under 

extension if for any distinguished triangle

𝑋 → 𝑌 → 𝑍 → 𝑋[1] (6.2.5)

such that 𝑋, 𝑍 ∈ 𝒞︀′, then 𝑌  also belongs to 𝒞︀′.

Proposition 6.2.23 [[Lur17], Proposition 1.2.1.16] Let 𝒞︀ be a stable ∞-category, let 𝐿 : 𝒞︀ → 𝒞︀ be a 

localization functor. Set 𝑆 as in Example 6.2.21. The followings are equivalent:

1. There exists a collection of morphisms {𝑓 : 0 → 𝑋} generating 𝑆.

2. The collection {0 → 𝑋 : 𝐿(𝑋) ≃ 0} generates 𝑆.

3. The essential image of 𝐿 is closed under extensions.

4. For any 𝐴 ∈ 𝒞︀, 𝐵 ∈ 𝐿𝒞︀, the natural map Ext1(𝐿𝐴, 𝐵) → Ext1(𝐴, 𝐵) is injective, where 

Ext1(𝐴, 𝐵) ≔ Homh𝒞︀(𝐴[−1], 𝐵).
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5. The full subcategories 𝒞︀≥0 = {𝐴 : 𝐿𝐴 ≃ 0} and 𝒞︀≤−1 = {𝐴 : 𝐿𝐴 ≃ 𝐴} determine a 𝑡-structure on 

𝒞︀.

If any of these conditions is satisfied, then we call 𝐿 a 𝑡-localization.

6.3 Examples of stable ∞-category

We still need a convincing example of stable ∞-categories, therefore, we will construct not just 

a single example, but a family of stable ∞-categories and a method to turn any ∞-category 

admitting finite (co)limits into a stable ∞-category.

Before introducing the construction, let us have a look at the functors between stable ∞-

categories.

Definition 6.3.1

1. An ∞-category is said to be left exact if it admits all finite limits. A functor between left 

exact ∞-categories is said to be left exact if it preserves all finite limits. We denote the full 

subcategory of left exact functors in Fun(𝒞︀, 𝒟︀) as Fun𝐿(𝒞︀, 𝒟︀). Dually one can define right 

exact categories and right exact functors.

2. A functor 𝐹 : 𝒞︀ → 𝒟︀ is called exact if it is pointed (i.e., preserves zero objects) and sends 

exact sequence to exact sequence. We denote the full subcategory of exact functors in 

Fun(𝒞︀, 𝒟︀) as Funex(𝒞︀, 𝒟︀).

Theorem 6.3.2 [[Lur09], Corollary 4.4.2.4]

1. An ∞-category admits finite limits iff it has a terminal object and admits pullbacks.

2. A functor is left exact iff it preserves terminal objects and pullbacks.

In particular, a functor between stable ∞-categories is exact iff it is left exact iff it is right exact.

Very roughly speaking, the stabilization of 𝒞︀ is a stable ∞-category that “universally approxi

mates” 𝒞︀ from the left.

Definition 6.3.3 Let 𝒞︀ be an ∞-category admits finite limits. The stabilization of 𝒞︀ is a stable 

∞-category Stab(𝒞︀) together with a left exact functor Ω∞ : Stab(𝒞︀) → 𝒞︀ such that for every 

stable ∞-category 𝒟︀, the composition with Ω∞ induces an equivalence

Funex(𝒟︀, Stab(𝒞︀)) →
≅

Fun𝐿(𝒟︀, 𝒞︀). (6.3.1)

We now explain how to construct such a stabilization of 𝒞︀ via spectrum objects in 𝒞︀. This 

construction matches the expectation that objects in Stab(𝒞︀) should be a sequence {𝑋𝑛} such 

that 𝑋𝑛 ≃ Ω𝑋𝑛+1.

Definition 6.3.4 The ∞-category of spectrum objects Sp(𝒞︀) for 𝒞︀ a small ∞-category is the 

sequential limit
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Sp(𝒞︀) ≔ lim(… →
Ω

𝒞︀∗ →
Ω

𝒞︀∗ →
Ω

𝒞︀∗) (6.3.2)

in the ∞-category Cat∞ of small ∞-categories.

This definition can be extended to any ∞-category, in particular, to the ∞-category of small 

animae An. We denote 𝒮︀ℋ︀ ≔ Sp(An) the ∞-category of spectra.

Proposition 6.3.5 [[Lur17], Proposition 1.4.2.16, Proposition 1.4.2.24] The ∞-category of spectrum 

objects Sp(𝒞︀) is stable and the universal stabilization of 𝒞︀ in the sense of Definition 6.3.3.

One can think of stable ∞-categories as an analogue of abelian groups in commutative algebra, 

or an analogue of chain complexes in homological algebra: It behaves much like the derived 

category of an abelian category. Contemplate this, we are going to justify the following defin

ition.

Definition 6.3.6 Let 𝒜︀ be an abelian category and Ch(𝒜︀) the 1-category of chain complexes 

with values in 𝒜︀. The simplicial Dold-Kan correspondence [[Lur17], Theorem 1.2.3.7] allows 

us to view Ch(𝒜︀) as a simplicial category, and we may identify Ch(𝒜︀) with its homotopy 

coherent nerve.

Let 𝑊qis be the collection of quasi-isomorphisms in Ch(𝒜︀), then the derived ∞-category of 𝒜︀ 

is the localization with respect to this collection:

𝐷(𝒜︀) ≔ Ch(𝒜︀)[𝑊−1
qis ]. (6.3.3)

Proposition 6.3.7 [[Lur17], Proposition 1.3.5.9, Proposition 1.3.5.13] Let 𝒜︀ be an abelian category, 

then the derived ∞-category 𝐷(𝒜︀) is presentably stable.

6.4 Symmetric monoidal structure

We will briefly introduce two special cases of ℰ︀𝑛-algebras: 𝑛 = 1 and 𝑛 = ∞ cases. For a full 

treatment of the theory, we refer readers to [[Lur17], §3, §4].

We give the proper definition of fibrations of simplicial sets first. The theory of fibrations of 

simplicial sets was studied in [[Lur09], §2] in detail.

Definition 6.4.1 A morphism 𝑓 : 𝑋 → 𝑆 of simplicial sets is

1. a left fibration if 𝑓  has the right lifting property with respect to all horn inclusions Λ𝑛
𝑖 ⊂

Δ𝑛, 0 ≤ 𝑖 < 𝑛.

2. a right fibration if 𝑓  has the right lifting property with respect to all horn inclusions Λ𝑛
𝑖 ⊂

Δ𝑛, 0 < 𝑖 ≤ 𝑛.

3. a Kan fibration if 𝑓  is a left fibration and a right fibration.

64



4. an inner fibration if 𝑓  has the right lifting property with respect to all horn inclusions Λ𝑛
𝑖 ⊂

Δ𝑛, 0 < 𝑖 < 𝑛.

Definition 6.4.2 Let 𝐹 : 𝒞︀ → 𝒟︀ be a functor of ∞-categories.

1. An edge 𝑓 : 𝑋 → 𝑌  in 𝒞︀ is called 𝐹 -coCartesian if the natural map 𝒞︀𝑓 / → 𝒞︀𝑋 / ×𝒟︀𝐹(𝑋) /

𝒟︀𝐹(𝑓) / is a trivial Kan fibration, i.e., a Kan fibration that is at the same time weak homotopy 

equivalence.

2. The functor 𝐹  is called a coCartesian fibration if it is an inner fibration and for every edge 

𝑔 : 𝑋 → 𝑌  in 𝒟︀ and 𝑋′ ∈ 𝒞︀ with 𝐹(𝑋′) = 𝑋, there exists a 𝐹 -coCartesian lift 𝑓  of 𝑔 with 

source 𝑋′.

With the notation of coCartesian fibrations, we are able to define the notion of (commutative) 

algebra objects in a (symmetric) monoidal ∞-category. We will use the fact that Cat∞ admits 

finite products.

Recall a morphism [𝑛] → [𝑚] in Δ is called convex if it is injective with image consisting of 

consecutive integers.

Definition 6.4.3

1. A monoidal ∞-category is an ∞-category 𝒞︀⊗ together with a coCartesian fibration 𝑝 : 𝒞︀⊗ →
Δop such that the Segal condition is fulfilled: for every [𝑛] ∈ Δ the Segal map

(𝑒∗
𝑖 )

𝑛
𝑖=1 : 𝒞︀⊗

[𝑛] → ∏
𝑛

𝑖=1
𝒞︀⊗

[1] (6.4.1)

induced by the 𝑛 inclusion maps 𝑒𝑖 : [1] ≅ {𝑖 − 1 ≤ 𝑖} ↪︎ [𝑛] is an equivalence. Here we 

denote 𝒞︀⊗
[𝑛] to be the fiber of 𝑝 over [𝑛], viewed as a subcategory of 𝒞︀⊗. In such case, we say 

that 𝑝 induces a monoidal structure on 𝒞︀ ≔ 𝒞︀⊗
[1].

2. A monoidal functor between monoidal ∞-categories 𝑝 : 𝒞︀⊗ → Δop and 𝑞 : 𝒟︀⊠ → Δop is a 

functor sending 𝑝-coCartesian edges to 𝑞-coCartesian edges. More generally, a lax monoidal 

functor is a functor sending 𝑝-coCartesian lifts of convex morphisms to 𝑞-coCartesian edges.

3. An ℰ︀1-algebra in 𝒞︀⊗ a monoidal category is a lax monoidal functor Δop → 𝒞︀⊗, i.e., a simpli

cial object in 𝒞︀⊗ such that the Segal condition is fulfilled. We denote all ℰ︀1-algebras in 𝒞︀⊗ to 

be Alg(𝒞︀⊗).

The definition of a symmetric monoidal ∞-category is similarly to the monoidal one, but we 

need to use another index category that encodes the commutative property.

Let Fin∗ be the (nerve of) category of all pointed finite sets and set-theoretic maps. We write 

{𝑛} ≔ {∗, 1, …, 𝑛} and call a morphism {𝑛} → {𝑚} inert if the preimage of elements that are 

different from the base point is a singleton.

Definition 6.4.4
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1. A symmetric monoidal ∞-category is an ∞-category 𝒞︀⊗ together with a coCartesian fibra

tion 𝑝 : 𝒞︀ → Fin∗ such that the Segal condition is fulfilled: for every {𝑛} ∈ Fin∗ the Segal map

(𝜌∗
𝑖 )

𝑛
𝑖=1 : 𝒞︀⊗

{𝑛} → ∏
𝑛

𝑖=1
𝒞︀⊗

{1} (6.4.2)

induced by the 𝑛 fold maps 𝜌𝑖 : {𝑛} → {1}, which sends 𝑖 to 1 and rest to ∗, is an equivalence. 

In such case, we say that 𝑝 induces a symmetric monoidal structure on 𝒞︀ ≔ 𝒞︀⊗
{1}.

2. A symmetric monoidal functor between symmetric monoidal ∞-categories 𝑝 : 𝒞︀⊗ → Fin∗ 

and 𝑞 : 𝒟︀⊠ → Fin∗ is a functor sending 𝑝-coCartesian edges to 𝑞-coCartesian edges. More 

generally, a lax symmetric monoidal functor is a functor sending 𝑝-coCartesian lifts of inert 

morphisms to 𝑞-coCartesian edges.

3. An ℰ︀∞-algebra, or commutative algebra in 𝒞︀⊗ a symmetric monoidal category is a lax 

symmetric monoidal functor Fin∗ → 𝒞︀⊗. We denote all ℰ︀∞-algebras in 𝒞︀⊗ to be CAlg(𝒞︀⊗).

There is a certain kind of symmetric monoidal structures that is important for us.

Proposition 6.4.5 [[Lur17], Proposition 2.4.1.5] If 𝒞︀ is an ∞-category with finite products, then 

there is a coCartesian fibration 𝒞︀× → Fin∗ making 𝒞︀× a symmetric monoidal ∞-category. We call this 

symmetric monoidal structure the Cartesian monoidal structure on 𝒞︀.

Proposition 6.4.6 Suppose 𝒞︀×, 𝒟︀× are equipped with the Cartesian monoidal structure, then a functor 

𝐹 : 𝒞︀ → 𝒟︀ is symmetric monoidal if and only if 𝐹  preserves finite products.

If we equip the ∞-category with Cartesian monoidal structure, then the commutative algebra 

objects in it are also called commutative monoids.

Example 6.4.7 [[Lur17], Example 2.2.6.9] Let 𝒞︀⊗, 𝒟︀⊠ be symmetric monoidal ∞-categories. 

Suppose 𝒟︀⊠ admits all small colimits and the symmetric monoidal structure on 𝒟︀ preserves 

them in each variable. Then there is a symmetric monoidal structure on Fun(𝒞︀, 𝒟︀), called the 

Day convolution. Moreover, the commutative algebra objects in Fun(𝒞︀, 𝒟︀) are precisely those 

lax symmetric monoidal functors.

6.5 Presentable ∞-category

We begin by defining the ∞-category of presheaves and state an ∞-categorical Yoneda lemma. 

As we have seen in Proposition 6.1.17, the Yoneda embedding should take values in the ∞-

category of presheaves of spaces, which work as a generalized notion of sets.

Definition 6.5.1 For 𝒞︀ an ∞-category, the category of presheaves of 𝒞︀ is Fun(𝒞︀op, An), we 

denote it by 𝒫︀(𝒞︀).
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Under this definition, Lurie proves the for any 𝒞︀ an ∞-category, 𝒫︀(𝒞︀) admits small limits and 

colimits [[Lur09], Corollary 5.1.2.4].

The construction of a Yoneda embedding is cumbersome [[Lur09], §5.1.3], but we have can still 

get a nice result as in 1-category.

Proposition 6.5.2 [[Lur09], Proposition 5.1.3.1] Let 𝒞︀ be an ∞-category. The Yoneda embedding

よ : 𝒞︀ → 𝒫︀(𝒞︀) (6.5.1)

is fully faithful.

Finally we describe a universal property of the presheaf category.

Theorem 6.5.3 [[Lur09], Theorem 5.1.5.6] Let 𝒞︀ be a small ∞-category and 𝒟︀ be an ∞-category admit 

small colimits, then the Yoneda embedding よ : 𝒞︀ → 𝒫︀(𝒞︀) induces an equivalence of ∞-categories:

Fun𝐿(𝒫︀(𝒞︀), 𝒟︀) ≃ Fun(𝒞︀, 𝒟︀) (6.5.2)

where Fun𝐿 is the category of all colimit preserving functors.

A close related concept with presheaves is the so called presentable ∞-categories. This relies 

on the fact that even sometimes 𝒫︀(𝒞︀) is not small, we can look at some subcategories that can 

be controlled with small compact objects with colimits.

Definition 6.5.4 Let 𝜅 be a regular cardinal. An ∞-category 𝒞︀ is called 𝜅-accessible if 𝒞︀ is locally 

small, has all 𝜅-filtered colimits and 𝒞︀ is generated under 𝜅-filtered colimits of 𝜅-compact 

objects, which form a essentially small subcategory of 𝒞︀.

Definition 6.5.5 An ∞-category 𝒞︀ is called presentable if it is accessible and admits all small 

colimits.

We note that for any 𝒞︀ an ∞-category, 𝒫︀(𝒞︀) is always presentable. In general however, there 

is a nice characterization of all presentable ∞-categories as the accessible localizations of some 

presheaves.

Lemma 6.5.6 [[Lur09], Lemma 5.5.1.4] Let 𝐹 : 𝒞︀ → 𝒟︀ be a functor between ∞-categories with filtered 

colimits. Let 𝐺 be a right adjoint of 𝐹 . Then 𝐺 preserves filtered colimits if and only if 𝐹  preserves 

compact objects.

Theorem 6.5.7 [[Lur09], Theorem 5.5.1.1] Let 𝒞︀ be an ∞-category, then the followings are equivalent:

1. 𝒞︀ is presentable.

2. There exists a small ∞-category 𝒟︀ such that 𝒞︀ is an accessible localization of 𝒫︀(𝒟︀).

Now we state a very useful statement about the existence of adjoints, the adjoint functor 

theorem:
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Theorem 6.5.8 [[Lur09], Corollary 5.5.2.9] Let 𝐹 : 𝒞︀ → 𝒟︀ be a functor between presentable ∞-

categories.

1. 𝐹  has a right adjoint if and only if 𝐹  preserves colimits.

2. 𝐹  has a left adjoint if and only if 𝐹  preserves limits.

The following three propositions are about presentable stable ∞-categories:

Proposition 6.5.9 [[Lur17], Proposition 1.4.4.4] Let 𝒞︀ be a presentable ∞-category, then the functor 

Ω∞ : Stab(𝒞︀) → 𝒞︀∗ admits a left adjoint Σ∞ : 𝒞︀∗ → Stab(𝒞︀).

Theorem 6.5.10 [[Lur17], Proposition 1.4.4.9] Let 𝒞︀ be an ∞-category, then the followings are equiv

alent:

1. 𝒞︀ is stable and presentable.

2. There exists a presentable stable ∞-category 𝒟︀ such that 𝒞︀ is an accessible left-exact localization 

of 𝒟︀.

Proposition 6.5.11 [[Lur17], Proposition 1.4.4.11] Let 𝒞︀ be a presentable stable ∞-category. Let {𝑋𝛼} 

be a small collection of objects in 𝒞︀. The smallest full subcategory of 𝒞︀ generated by 𝑋𝛼 under small 

colimits and extensions is presentable.

The next two lemmata are about sifted colimits and spherical presheaves, which are used in 

the construction of Thom spectra.

Definition 6.5.12

1. A non-empty ∞-category 𝒞︀ is sifted if the diagonal functor Δ : 𝒞︀ → 𝒞︀ × 𝒞︀ is a cofinal 

functor, i.e., for any functor 𝐹 : 𝒞︀ × 𝒞︀ → 𝒟︀, pre-composing with Δ preserves colimit:

colim(𝒞︀ ⟶
Δ

𝒞︀ × 𝒞︀ ⟶
𝐹

𝒟︀) ≃ colim(𝒞︀ × 𝒞︀ ⟶
𝐹

𝒟︀) (6.5.3)

when either of the limits exists.

2. A sifted colimit in an ∞-category 𝒞︀ is the colimit of diagrams 𝐹 : 𝒟︀ → 𝒞︀, where 𝒟︀ is a sifted 

∞-category. All ∞-categories admitting sifted colimits span a subcategory Catsift
∞  in Cat∞.

Proposition 6.5.13 [[Lur09], Prop. 5.5.8.15] The inclusion Catsift
∞ → Cat∞ has a left adjoint 𝒫︀Σ :

Cat∞ → Catsift
∞ , which associates an ∞-category to the presheaves 𝒞︀op → An that sends finite coprod

ucts to products, called the ∞-category of spherical presheaves.

Definition 6.5.14 An ∞-topos 𝒳︀ is an accessible left exact localization of 𝒫︀(𝒞︀) where 𝒞︀ is a 

small ∞-category.
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6.6 Category of spans

Let 𝒞︀ be an ∞-category and left, right be two collections of morphisms in 𝒞︀, such that they 

contain equivalences, are closed under composition and closed under pull back along each 

other.

Definition 6.6.1 The ∞-category Span(𝒞︀, left, right) is the category with objects the same as 𝒞︀, 

and morphisms from 𝑋 to 𝑍 are spans like 𝑋 ←
𝑓

𝑌 →
𝑔

𝑍 such that 𝑓  is a left morphism and 𝑔 

is a right morphism. The composition of 𝑋 ←
𝑓

𝑌 →
𝑔

𝑍 and 𝑍 ←
ℎ

𝑊 →
𝑗

𝐴 is given by

𝑗

ℎ

𝑓

𝑔

𝑌 ×𝑍 𝑊

𝑌

𝑊

𝑍

𝑋

𝐴
⯾

Definition 6.6.2 An ∞-category 𝒞︀ is called extensive, if 𝒞︀ admits finite coproducts and they 

are disjoint (i.e., for every 𝑋, 𝑌 ∈ 𝒞︀, 𝑋 ×𝑋⊔𝑌 𝑌  is an initial object), and their decompositions 

are stable under pullbacks.

Notation 6.6.3 We will mainly consider 𝒞︀ = 𝒮︀m𝑆  the category of smooth schemes over 𝑆 (note 

𝒮︀m𝑆  is extensive) and following collections of morphisms:

1. all = all morphisms in 𝒞︀,

2. inj = all injective maps in 𝒞︀,

3. Suppose 𝒞︀ is extensive, then we denote fold to be the classes of maps that are finite sums of 

fold maps 𝑋∐ 𝑛 → 𝑋.

4. For simplicity we write Span(𝒞︀) = Span(𝒞︀, all, all).

Let 𝒟︀ be an ∞-category with finite products, then functors Span(Fin) → 𝒟︀ preserving finite 

products are precisely the commutative monoids in 𝒟︀.

Proposition 6.6.4 [[BH21], Proposition C.1]

1. There is an equivalence of ∞-categories

Fin∗ ≃ Span(Fin, inj, all)

𝑋+ ↦ 𝑋, (𝑓 : 𝑋+ → 𝑌+) ↦ (𝑋 ↩︎ 𝑓−1(𝑌 ) ⟶
𝑓

𝑌 ).
(6.6.1)

2. Let 𝒟︀ be an ∞-category with finite products, then the restriction of

Fun(Span(Fin), 𝒟︀) → Fun(Fin∗, 𝒟︀) (6.6.2)
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onto

Fun×(Span(Fin), 𝒟︀) →≃ CAlg(𝒟︀) (6.6.3)

is an equivalence of ∞-categories.

Now if 𝒞︀ is extensive and 𝒟︀ admits finite products, we have an obvious functor

Θ : 𝒞︀op × Span(Fin) → Span(𝒞︀, all, fold), (𝑋, 𝐹) ↦ ∐
𝐹

𝑋. (6.6.4)

We can generalize the above proposition to spherical presheaves using Θ.

Proposition 6.6.5 [[BH21], Proposition C.5] Let 𝒞︀ be an extensive ∞-category and 𝒟︀ an ∞-category 

with finite products. The functor

Θ∗ : Fun(Span(𝒞︀, all, fold), 𝒟︀) → Fun(𝒞︀op × Span(Fin), 𝒟︀) (6.6.5)

restricts to an equivalence of ∞-categories

Fun×(Span(𝒞︀, all, fold), 𝒟︀) →≃ Fun×(𝒞︀op, CAlg(𝒟︀)). (6.6.6)

We need a relation of spans with Kan extension. For a functor 𝐹 : Span(𝒞︀, left, right) → 𝒟︀, we 

let 𝐹|𝒞︀ : 𝒞︀op → 𝒟︀ be the restriction onto left morphisms.

Proposition 6.6.6 Let 𝒞︀, 𝒟︀ be ∞-categories and 𝑚 be a collection of morphisms in 𝒞︀ that is closed 

under pull back and composition. Let 𝒞︀0 a full subcategory of 𝒞︀ such that if 𝑋 ∈ 𝒞︀0 and 𝑌 → 𝑋 

is a 𝑚-morphism, then 𝑌 ∈ 𝒞︀0. A functor 𝐹 : Span(𝒞︀0, all, 𝑚) → 𝒟︀ has a right Kan extension to 

Span(𝒞︀, all, 𝑚) → 𝒟︀ iff the functor 𝐹|𝒞︀0 : 𝒞︀op
0 → 𝒟︀ has a right Kan extension to 𝒞︀.

Proof. For 𝑋 ∈ 𝒞︀, the inclusion

𝒞︀0 ×𝒞︀ 𝒞︀𝑋 / ↪︎ Span(𝒞︀0, all, 𝑚) ×Span(𝒞︀, all,𝑚) Span(𝒞︀, all, 𝑚)𝑋 / (6.6.7)

has a right adjoint and hence is coinitial, This proves the statement. □

6.7 Pro-objects

We introduce pro objects, which is a generalization of presheaves.

Proposition 6.7.1 [[Lur09], Proposition 5.3.6.2] Let 𝒞︀ be an ∞-category, there is an ∞-category 

Pro(𝒞︀) and a embedding 𝑗 : 𝒞︀ → Pro(𝒞︀) with following universal properties:

1. Pro(𝒞︀) has all small cofiltered limits.

2. Let 𝒟︀ be an ∞-category with small cofiltered limits, let Fun′(𝒞︀, 𝒟︀) be those functors that preserve 

small cofiltered limits, then the embedding 𝑗 induces an equivalence

Fun′(Pro(𝒞︀), 𝒟︀) →≃ Fun(𝒞︀, 𝒟︀) (6.7.1)

If 𝒞︀ is accessible, we may identify Pro(𝒞︀) with the full subcategory of Fun(𝒞︀, An)op spanned by functors 

that are left-exact and accessible.
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Proposition 6.7.2 [[Lur09], Proposition 5.3.1.16] Every pro-object 𝑋 ∈ Pro(𝒞︀) can be corepresented 

by a diagram 𝒥︀ → 𝒞︀ where 𝒥︀ is a small cofiltered partially ordered set.

We will refer to Pro(An) as the ∞-category of shapes, this name will be justified right now.

Let 𝐺 : 𝒟︀ → 𝒞︀ be an ∞-functor of presentable ∞-categories preserving finite limits, a “slight 

variant” of adjoint functor theorem gives us a pro-left adjoint 𝐹 : 𝒞︀ → Pro(𝒟︀) to 𝐺. This 

applies to the setting of ∞-topoi. The following definition is a special case of shape theory as 

in [[Lur09], §7.1.6].

Definition 6.7.3 Let 𝒳︀ be an ∞-topos, let 𝜋 : 𝒳︀ → An be the unique geometric morphism, 𝜋∗ the 

direct image functor. Let 𝜋∗ be the left adjoint to 𝜋∗. The above discussion ensures the existence 

of a pro-left-adjoint 𝜋! : 𝒳︀ → Pro(An).
The fundamental pro-∞-groupoid of 𝒳︀ is the shape

Π∞𝒳︀ ≔ 𝜋!𝟙 ∈ Pro(An) (6.7.2)

In other words, it is the composition 𝜋∗𝜋∗ : An → An.

6.8 ℰ︀∞-descendability

On the level of ℰ︀∞-rings, we have a notion of descendable objects, inspired by the concept 

in obstruction theory. This is firstly introduced in [Mat16] and get a slight generalization in 

[AS25].

Definition 6.8.1 Let 𝑓 : 𝑅 → 𝑆 be a morphism of ℰ︀∞-rings. 𝑓  is said to be ℰ︀∞-descendable if 

the map of towers {𝑅} → {Tot𝑛(𝑆∧∗+1)}
𝑛

 is a pro-equivalence in Pro(CAlg(Mod𝑅)).

We only need to use an equivalent characterization of ℰ︀∞-descendability for our purpose.

Proposition 6.8.2 [[AS25], Prop. 2.3] Let 𝑓 : 𝑅 → 𝑆 be a morphism of ℰ︀∞-rings. The followings are 

equivalent:

1. 𝑓  is ℰ︀∞-descendable.

2. The map 𝑅 → Tot𝑛(𝑆∧∗+1) admits an ℰ︀∞-retraction for some 𝑛 ≥ 0.

3. If 𝒞︀ is the smallest full subcategory of CAlg(Mod𝑅) which contains the ℰ︀∞-algebra that admits a 

map from 𝑆 and 𝒞︀ is closed under finite limits and retractions, then 𝒞︀ contains 𝑅.

Proposition 6.8.3 [[AS25], Lemma 2.5] Let 𝐹 : 𝒞︀ → 𝒟︀ be an exact lax symmetric monoidal functor of 

symmetric monoidal stable ∞-categories. If 𝑓 : 𝑅 → 𝑆 is ℰ︀∞-descendable, then so is 𝐹(𝑓) : 𝐹 (𝑅) →
𝐹(𝑆).
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