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1. Motivation



1.1 Adams-Novikov spectral sequences

Classical Adams spectral sequence takes the ordinary homology
mod p as an input and approximates the p-stem of the stable
homotopy groups of spheres.

We can generalize this to any ring spectrum FE, inducing F’-Adams
spectral sequences. Suppose we want to approximate [S, S|, we may
try to make use of E,(S) — E,(S) over E, (F) the Hopf algebroid

of dual E-Steenrod operations.

If we view it as a base change S — F/, then we can recover the
module information over S by totalization of the cobar resolution

S+EZENEZ ..

This is a cosimplicial spectrum in Modg, and carries a filtration by
finite totalizations. The F-Adams spectral sequence is the spectral
sequence associated to this filtration.
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1.1 Adams-Novikov spectral sequences

Specialize to © = MU, the complex cobordism spectrum, we get a
spectral sequence which converges faster to the full stable
homotopy group of spheres. We call this the Adams-Novikov
spectral sequence, which plays an important role in chromatic
homotopy theory.

B (AN) = 7_,_,gr*Tot, (MUM1) = m_,_,(S)

We want to extend this result, by considering a cobordism theory
of “motivic nature” and defining filtration on it. We hope it also
converges to certain homotopy groups of connective spectra, or
best, of motivic spheres.
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1.2 Main result

The stable homotopy group of motivic spheres has its own interest
due to rich algebraic and arithmetic information contained in it, e.g.
the Milnor-Witt K-theory. Inspired by topological setting, we can
compare it with stable homotopy group of spheres in the form of
spectral sequences.

Theorem 1.2.1 The Adams-Novikov spectral sequence

E%'(AN) and the motivic Atiyah-Hirzebruch spectral
sequence

Ey(AH) =, o o(gr 2Sp)(k) = 74 0(Sk) (k)
are isomorphic by

3p+q,2
Bp g W1 (Bp,q BPI(AH), d,) — (@p g Earii T (AN), d2r+1)
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1.3 Remark on co-category

Axiom 1.3.1 There are model independent objects called oco-
categories with following features:

1. It has objects and morphisms between objects.

2. It contains n-isomorphisms expressing the equality of (n —
1)-isomorphisms, where 1-isomorphims are those between
objects.

3. n-isomorphisms can compositite, forming a generalization
of commutative triangles and commutative squares.

4. Every 1-category gives rise to an co-category.

5. There are co-categories Cat_, and An, called the oo-
category of small co-categories and small animae, where an
anima can be understood as the homotopy type of a space.

6. Cat_, has () as initial object and [0] = {*} as terminal
object. It has products, pullbacks and pushouts.
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1.3 Remark on co-category

7. There’re categorical constructions like subcategory and
Dwyer-Kan localization with respect to certain collection of
morphisms.

Cheni Yuki Yang Slice, décale and realize, motivically 2026-01-29



2. Motivic
homotopy theory



2.1 Motivic space

Motivic homotopy theory is the homotopy theory of smooth
schemes where A! is the interval object. In order to get an analog
of smooth manifolds, we consider the presheaves of animae on
Sm, and localize them. We use Nisnevich topology because it gives
us a descent of algebraic K-theory (s. Filtration).

Definition 2.1.1 The unstable motivic category F (k) is the
localization of P(Sm; ) under the following morphisms:
1. (Al-invariance) X x A} — X;
2. £(U) L, &£ (V) — &£ (X) for any Nisnevich
(UxxV)
square {U — X,V — X};
3. the unique map ) — X (0).

where & : Smg — P(Sm,;) is the Yoneda embedding functor.
This gives us a localization functor L, : P(Sm,) — F (k).

Slice, décale and realize, motivically 2026-01-29



2.1 Motivic space

Proposition 2.1.2 There is a closed symmetric monoidal
structure on # (k), given by the localization of the section-
wise smash product, where J{ (k), is the category of pointed
motivic spaces.
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2.2 co-category and stabilization

Just like motivic spaces resemble the classical homotopy category
of spaces, the stable motivic category is a generalization of
topological spectra.

In the setting of higher algebra, there is a canonical way to stabilize
an co-category, by considering the spectrum objects Sp(C) of the
category C.

Definition 2.2.1 The oo-category of spectrum objects Sp(C)
for € a small co-category is the sequential limit

Q Q Q
Sp(C) := lim(... —C, = C, — 6’*)

in the co-category Cat__ of small co-categories.
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2.2 co-category and stabilization
We have two options: invert S' = X(* [ ] *) or invert P! ~ St A
G,,,- The later turns out to be a better candidate.

Definition 2.2.2 The stable motivic category S (k) is the
colimit of the following sequence:

IP)l . ]P>1 . Ip)l .
Hk), > H(k), - Hk), -
together with a symmetric monoidal functor X357 : 7 (k),

SH (k) which sends P! to an invertible object. Moreover,
SH (k) carries a canonical symmetric monoidal structure.

_>

We have the following universal property of SH (k).
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2.2 co-category and stabilization

Proposition 2.2.3 (Robalo) The stable motivic category

SH (k) is indeed stable. Moreover, let € be a pointed
presentable symmetric monoidal co-category, the composition
with stabilization

Fun®*(8H (k),C) — Fun®(H (k),,C), F s F o 3

is fully faithful with essential image consisting of those
symmetric monoidal functors F' : # (k), — € which are P!-
stable, i.e. the homotopy cofiber of F/(Spec k) — F(P!)
induced from Spec £ % P! is ®-invertible.
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2.3 Homotopy sheaf and connectivity

Definition 2.3.1 Let E € 8H (k), we shall denote S*7 :=
(Sl)m_‘7 A G/ to be the motivic (4, j)-sphere. The (4, j)-th
homotopy sheaf 7; ;(E) of F is the sheafification of the
presheaf

X € 8my > [SRX,EASTI]

where [ X, Y] is the 0-th truncation of the mapping space, i.e.
the set of morphisms in the homotopy category.

We may discuss the connectivity with respect to this bigraded
homotopy sheaf.
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2.3 Homotopy sheaf and connectivity

Definition 2.3.2 The homotopy t-structure on S (k) is

given by

Theorem 2.3.3 The homotopy ¢-structure is indeed a ¢-
structure. And all truncation functors are symmetric monoidal
with respect to the smash product on SH (k).
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3. Algebraic cobordism




3.1 Vector bundles and Thom spaces

For a vector bundle & — X over smooth scheme X € dm,, we can
define the Thom space Th(E) := £/(& — X)) € Shvy;(Smy)
pointed at the image of £ — X, where X is embedded as the zero
section. Suppose we have £&; = X, and &, — X, then

Definition 3.1.1 Let
BGL, = Gr,, := lilgn Gr,, (A"HF)
be the Grassmannian of n-dimensional affine subspaces and

v, the tautological bundle on it. The product A! x v —
BGL,, is classified by pullback of the canonical map BGL,, —
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3.1 Vector bundles and Thom spaces

BGL,,, ; and 7, , this induces a bundle map Al x v, —
Yn+1> and a structure map

Th(A') A Th(vy,) = P* A Th(y,,) = Th(y,.1)-

The algebraic cobordism spectrum MGL, € S (k) is defined
to be

MGL,, := colim,, ¥p1">p1 Th(7y,, ).

Definition 3.1.2 the algebraic K-theory spectrum KGL &€
SH (k) as

KGL := %L, (Z x BGL)
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3.1 Vector bundles and Thom spaces
where BGL is the sequential limit of

... <+ BGL,, <+ BGL,, . ; & ...

and the structure map is given by

B:P'AL_ (ZxBGL)— L_ . (Z x BGL)

representing the Bott element in K°(P' A L .(Z x BGL)).
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3.2 Functorial treatment

Theorem 3.2.1 (Bachmann-Hoyois) There is a colimit-

/ 5%) s SH(k), called

the motivic Thom spectrum functor, which sends a spherical

preserving functor M, : B ((8 m,,)

presheaf into a Thom spectrum.

Let Vect(X) be the symmetric monoidal co-category of vector
bundles over X € Sm,, with symmetric monoidal structure given
by direct sums. We have a symmetric monoidal functor

Vect(X) — Sph(X), & — X5 Th(§)

natural in X, where Sph(X) is the anima spanned by invertible
objects in SH (X)~. And this gives us a natural transformation

Vect — Sph : Span — CAlg(An).
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3.2 Functorial treatment
Since Sph(X) is an anima, by taking the group completion of
Vect(X), we have the factorization

Vect

VectsP > K

Definition 3.2.2 The above natural transformation j : K —
Sph is called the motivic J-homomorphism.

Proposition 3.2.3 Let e : K° < K be the injection of rank 0
part of algebraic K-theory. The bundle v : BGL — K°
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3.2 Functorial treatment

representing Al-localization of tautological bundle induces an
equivalence in SH (k):

MGL;, = My(jeeoy) =~ My(jee).

Corollary 3.2.3.1 The algebraic cobordism spectrum is
equipped with an £__-ring structure.

Proof. Since M, is colimit preserving, it sends objects in

CAlg (?E(Smk)/sﬂg) to objects in CAlg(SJF (k)). It remains to

check that the motivic J-homomorphism on zeroth summand is a

commutative algebra object in - (Sm,,) 1850~ which is clear.
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4. Filtrations




4.1 Slice filtrations

Definition 4.1.1
1. The full subcategory of SH (S) generated by spectra
s12p1 X, N € Z under colimits, where X € Smg a
smooth scheme, is called the category of eftective motivic
spectra, denoted by SFA ().
2. For any k € Z, the category of k-effective spectra

SH(S) (k) is generated by

S12p1 ((Pl)/\k A X) n € 7.
_I_

where X € Smg a smooth scheme.

Note that S °%(S) is stable and presentable. By the usual adjoint
functor theorem we have:
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4.1 Slice filtrations

Proposition 4.1.2 The inclusion functor ¢, : SH%(S) (k) —
SH (S) admits a right adjoint 7, : SH (S) — SHH(S) (k).

For a motivic spectrum E, we set E* := 1, (r,.(E)), called the k-
effective cover of . We then have a filtration

s B+l s pk _y pk-1

called the slice filtration of motivic spectra. The graded piece is
called slice.

The effective spectra category expresses certain connectivity with
respect to G, but not S'. We thus can also consider an variant.
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4.1 Slice filtrations

Definition 4.1.3

1. The full subcategory in S (S) generated under colimits
by spectra g1 Y¥p1 X, n > 0 is called the category of very
effective spectra, denoted by SH V°1(S).

2. For any k € Z, the category of k-very eftective spectra is
generated by

S12p1 ((]P’l)/\k /\X) n > 0.
_|_

where X € dmg a smooth scheme.

the inclusion 7, : SH % (S) (k) — SH (S) we have a right adjoint
7. SH(S) — SHV(S)(k), and this induces a tower of very
effective cover of spectra:
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4.1 Slice filtrations

.= EMY=7 7 E— BEF — EFL

called the generalized slice filtration of motivic spectra. The graded
piece is called the generalized slice.

D Remark

Voevodsky made several conjectures about slices. one of them
conjectures that gr’(KGL) ~ M, representing the motivic
cohomology.
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4.1 Slice filtrations

The calculation of slices of MGL,, is very important for our
purpose.

Theorem 4.1.4 (Hopkins-Morel-Hoyois) Let k£ be a field of
exponential characteristic e and MGL € S7 (k) the algebraic
cobordism spectrum. The canonical map

f: MGL/(by, by, ..)[1/e] — My[1/e€]

is an equivalence.

Corollary 4.1.4.1 Let S be an essentially smooth scheme over
a base field k. The slices of MGL* in §7((S) are given by

er' MGL* ~ X251 H L, [1/e]
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4.1 Slice filtrations

where L, is the ¢-th graded piece of L viewed as an Adams
graded MU, -module. In particular, for k a field of
characteristic 0, the zeroth slice of MGL is M.

Corollary 4.1.4.2 For any Landweber exact spectrum F €
SH (k) (especially MGL, ), the slice filtration and generalized
slice filtration of E agree.
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4.2 Degression: Beilinson ¢-structure and Décalage

Theorem 4.2.1 (Beilinson, Ariotta, Antieau) Let € be a stable
oo-category with sequential limits. There is a canonical
categorical equivalence of complete filtrations and coherent
cochain complexes:

Fil (@) ~ Ch*(C)

which sends a complete filtration F* to a cochain complex C
with C™ ~ gr"F*[n|.

Definition 4.2.2 Let (Cs, C() be a t-structure on a stable oo
-category € with sequential limits. Consider the pointwise ¢-
structure on Ch*®(C), by the above categorical equivalence we

Cheni Yuki Yang 2026-01-29



4.2 Degression: Beilinson ¢-structure and Décalage

can thus define a ¢-structure (Fil (€)2,, Fil,(€)2,) on
Fil_.(€), which is called the Beilinson ¢-structure on Fil_(C).

For incomplete filtrations F* € Fil(C), we can glue the trivial ¢-
structure on € and Beilinson t-structure on Fil _(C) to get the
Beilinson t-structure on Fil(C).

Definition 4.2.3 Let F* be a filtration. Consider the
Whitehead tower with respect to the Beilinson ¢-structure on

Fil(C)
e > P B Fr D (FY—

By taking the realization, we get a new filtered object of €
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4.2 Degression: Beilinson ¢-structure and Décalage

. —> |7‘§n+1F*| — |7‘§nF*| — |7‘§n_1F*| — ...

This is called the décalage of F*, and we denote Dec® (F*). If
F* is a filtration on X, Since we have natural maps TgnF* —
F*, we then have a map

2, F* — [F*] —» X

hence Dec®(F*) is a filtration on X.

Example. (Berthelot-Ogus, Bhatt-Morrow-Scholze)
Let M* € Ch(Mod 4) and f € A such that M is f-torsion free.

Consider the f-adic filtration F* on M*®, we define a new complex
by

(n;M)" = {z € F'M' : di(z) € F+1 M1}
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4.2 Degression: Beilinson ¢-structure and Décalage

and this construction descends to Ln; : D(A) — D(A). In fact,
L ;M can viewed as Dec’ (F* M).

Now we study how to build spectral sequences out of filtrations.

A filtration F* gives rise to a coherent cochain complex
o = gr S s — 1] = gr 5F*[—s] = gr TR [—s + 1] — ...

Apply the 7, functor and after suitable suspension yields a
coherent cochain complex in the heart €V of €

—s—1 — — s+l
coe % 7-‘-8_|_t_|_1gr 5 F* % ﬂ-s_l_tgr SF* % 7-‘-8_|_t_1gr 5 F % coe

Definition 4.2.4 The E_-page of the spectral sequence
associated to a filtration F* is defined inductively to be
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4.2 Degression: Beilinson ¢-structure and Décalage
Ef’t (F*) := gy gr °F*
Epfy (FY) = B 572 (Dec(F*))
together with the differential:

s,t — ST —s+1
dy” ey, FT = mo, qgr K

s,t ._ j—t,s+2t
d,r._l_l *— d,r. .
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4.2 Degression: Beilinson ¢-structure and Décalage
Visualization. (Antieau, 2024)

—-4-3-2-10 1 2 3 4 5 6 7 8
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5. Realizations




5.1 Betti realizations

Realization functors are colimit preserving exact functors that send
motivic spectra into a simpler stable co-categories, e.g. 57 .

Let k be a field of characteristic zero equipped with an embedding
k< C.

1. We lift the functor (—)(C) : Sm, — An, which associates a
smooth scheme S with the homotopy type of the space of its
complex points S(C) under the analytic topology, to a colimit
preserving functor Rep : P(Sm;) — An.

2. We can show this functor preserves Nisnevich excision and A'-
invariance, thus Re¢ : P(Sm;) — An factors through J( (k) of
motivic spaces. The same construction works for pointed spaces

7 (k)

*.
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5.1 Betti realizations

3. The final step is to post-compose the stabilization functor and
check whether ¥*° o Rep : K (k), — SH is symmetric
monoidal and inverts P!, hence this functor factors through
SH (k) and induces a functor Rep : SH (k) — SH, which is
well-defined, symmetric monoidal, preserves colimits and finite
products. We call this functor complex Betti realization.

4. The set C-points of a R-scheme naturally carries a Z /2-action
by complex conjugation, hence similarly, the functor (—)(C)
pre-composing with base change induces a functor Rey, :

H (k) — ?(OZ/Q), where O, is the orbit category of Z/2 and
induces a functor Reg : SH (k) — SH ( , which is well-defined,
symmetric monoidal, preserves colimits and finite products. We
call this functor real Betti realization.
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5.1 Betti realizations

Notice Re¢ preserves the &, -ring structure on SJ (k) and SH for
1 < n < oo, this is a direct consequence of the fact that Re is lax
symmetric monoidal. Moreover we have

Proposition 5.1.1 The restriction of Reg : SH (k) (m) —
SH < 4,, is well-defined, where 57 - ,,,, is the subcategory of
2m-connected spectra.
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5.2 Etale realization
Let k be a field of characteristic p. Let £ # p be a prime.

Let An” be the category of profinite spaces, it is naturally identified
with pro-objects of presheaves of Fin finite sets via the limit
functor. For any shape S € Pro(An), we can associate a profinite
completion S" € An” to it. Our target of étale realization functor

will be the S?-stabilization of An’, viewing S? as a constant sheaf,
to which we denote SH S

We localize Pro(An) with respect to all pro-morphisms that induce
isomorphisms on objectwise continuous cohomology with Z /¢-
coefficients. We denote it as Pro(An),.

There is a well-defined exact functor Rey, : SH (k) —
Pro(An), — SHS". We call this functor étale realization.
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5.3 Realization of Thom spectra

Theorem 5.3.1 Let MU denote the complex cobordism

spectrum in SJ. Then there is an isomorphism of £__ rings:
RecMGL ~ MU, where MU is equipped with the &__

structure as a Thom spectrum.

The proof idea is essentially to identify the Betti realization of
motivic Thom spectrum functor with the topological Thom
spectrum functor and the following calculation:

Recall MU is identified with M (BU 4 5?[”) and MGL =
M, (KO i) 5}[2), so we reduce to check Req(K°) ~ BU. To see

this, one compute
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5.3 Realization of Thom spectra
Rec(K°) =~ Req(BGL) = Reg(colimpo (GL — GL x GL — ...))

~ B (Rec(GL)) (UGL ) ~B(| JU,.(C)) =

where 1 is true since Re preserves colimit and 2 comes from the

deformation retract U, (C) < GL,, (C).

Corollary 5.3.1.1 Let MU” be the Postnikov filtration on MU
and MGL* the slice filtration on MGL € 87 (k), then
Rer-(MGL™) is (2n — 1)-connected, and we have an
isomorphism in $7(:

TZ2nReC (MGLn) = MU2TL
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6. Spectral sequences




6.1 Atiyah-Hirzebruch spectral sequences

1. Let E € S (k) and E* the slice filtration on E. Then Section
4.2 yields a spectral sequence related to E*, we call this the
motivic slice spectral sequence associated to E*.

2. We are primarily interested in the global section of this slice
spectral sequence. This is also what Levine is referring to as
motivic Atiyah-Hirzebruch spectral sequence:

Ey'(AH)(E) = myy0(8r° E*)(Spec k) = 7, o(E)(Spec k)

3. Our goal is to identify this spectral sequence with something out
of topological nature. We shall do it in characteristic 0 and p-
cases, where the first case can be divided into global and ¢-local
pictures.
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6.2 Characteristic O case

Lemma 6.2.1 The Betti realization functor gives an
isomorphism

Re(gr[a’b) Sj) = gri2¢:28) Dec® (MU 1)

Proof. We first notice the Postnikov tower on MU can be applied
termwise on cosimplicial spectrum s = MU”$*! and incudes a
filtration on it. (note here this filtration is indeed complete)

Since Re is an exact symmetric monoidal functor, it preserves
cofiber sequences and we have an isomorphism

Rec (colimsSNTotsgr[a’b) MGLM™H1) = colim, _ yTot 705,725, MU,
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6.2 Characteristic 0 case
We still need to calculate the left side to get rid of the colimit. We
observe this follows from the descendability of gr'®»®S* —
grle:t) (LS)*MGL/\*+1: Indeed, descendability implies an equivalence

grlal)§t ~ TOthr[a’b)(Ls)*MGL/\*+1

in SH (k) = Modg . Now take N = oo and by definition of

décalage functor, we have the desired result.

Therefore, we reduce to show:

Lemma 6.2.2 Let a < b < s + 1, denote ¥ : AS* < A the

inclusion of simplicial sets and (¢, ) _its right adjoint. Then
grliat)sy — gr[""b>(bs)*MGL/\*+1 is £ -descendable.
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6.2 Characteristic O case

Proof. The unit map ¢S, — MGL"**! induces amap S, —
holimp <. (¢,) MGL"*! since holim(¢,) S;, ¢ S;. On the other
hand, there is an equivalence

holima <, (1,), MGL"**! ~ Tot_(s,) MGL"**!

by definition. We now show gr!»?S* = Tot_grl®?) (LS)*MGL/\*+1,
which, in light of equivalent definitions of descendability, suflices

to construct a retraction from Tot*gr®?) (4 S)>I<1\/I(}L/\"‘Jrl to
gr[a’b)S’};.

We show cofib (gr[“’b)S’}; — Totsgr[a’b>(Ls)*MGL/\*+1) = (. For
this, notice that by Hopkins-Morel-Hoyois gr’S} = gr' MGL* ~
M, . Let MGL be the cofiber of S, — MGL, then it follows that

MGL' = MGL, thus (MGL**+!)""" = MGL"**!, and we have

s+1

(QSM—GLAsH) ~ QOSMGLAsH!.
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6.2 Characteristic O case
Hencefora <b<s+1

grl@? (Q*MGL**!)" = 0.
The following fiber sequence is well known [HA, §4.7.2]:
QSMGL"**tt — Tot MGL™*! — Tot,__ MGL/**!

and after truncation to (¢ S)*MGLA"‘+1 we have a cofiber sequence

Sy, = Tot,_; (t,) MGL™*! — Tot, (1,) MGL™+ — QMGL/ s+,

Then we conclude by taking the associated graded pieces.
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6.2 Characteristic O case

Proof of main theorem. Since a and b in the lemma are arbitrary, we
have an isomorphism of the slice spectral sequences associated to

two filtrations Re(S}) and Dec® (MU**1), where all the odd
homotopy groups of MU”$*! vanish.

On the other hand, the realization functor induces an isomorphism
T0.0 (gr[“’b> Sy ) (k) =, (Re(gr[“’b)SZ))

whence the first spectral sequence is just F(AH) by definition.
This, after a change of F,-spectral sequence to E-spectral
sequence, yields

EP9I(AH) = B2 P(Dec(MUMH)) 22 B3P 97P(Dec(MUM)).
Now by décalage:

2p,q— O\~ 3p+q,—2 . 3p+q,2
E272~? ! p(DeC(MUA ) = Ezfif p(MU/\ ) = E2fi§] p(AN)-
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6.3 Completion and localization

We can construct the motivic counterpart of the Brown-Peterson
spectra, a direct summand of MU( 0)> the Boustfield localization of
MU. As this is a Landweber exact theory, we have

g1S; ® Z () ~ gr®MGL* ® Zy), ~ gi®BP},,.
(0

Apply the descendability argument to 53, ® Z(,) — BP;; we can

establish an isomorphism of spectral sequences:

ES'(AN), = Ext]z’;(@

I I
 (BP©) (BPfk ). BP! >) = TS ® Z

and

ETYAH), =m_,_40(gr 9S;)(k) ® Ziyy = m_,_4,0(Sp) (k) ® Zy).
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6.3 Completion and localization

Similarly the completion with respect primes away from
characteristic is well defined, for example

MGLQ := lim, MGL /¢".

In characteristic zero this is not well behaved under realizations
because it is an infinite limit.
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6.3 Completion and localization

Completion can also happen for other elements in ring spectra.

Definition 6.3.1
1. The algebraic Hopf map is the class n € m ;(S;) induced
by the coordinate map

A% —{0} = Pg, (z,y) b [z : 9.

2. The limit of the sequential tower

... = E A cofib(n™*!) — E A cofib(n™) — E A cofib(n™!) — ...

is called the -completion E of E.
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6.4 /-adic case

We can define an étale version of stable motivic homotopy
category, of which we denote S ., (.S). This category turns out to
be a non-full localization of SH(S). The identity functor id :
Smg — Smg induces a geometric morphism of co-topoi

g, : Shvl (Smg) — Shvy, (Smyg)
with a left adjoint €*. This adjunction descends to
¥ SH(S) 2 SH 4 (S) : e,

Since H'!(Spec k;Z/n) ~ p, (k). Let  be a primitive n-th roots
of unity in £, and let 8, be the associated element of
HY%1(Spec k;Z/n). the spectral sequence

HPT24.9+ (L7, /n) @ L,[1/p] = MGLP-4(k)[1/p]
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6.4 /-adic case

sends 3, to an element in MGLY!(k; Z /n), which we call motivic

Bott element. The element 8. actually lives in (MGL/£)>™ (k)
for some NV, and the formal inversion with respect to 8,. is
independent on the choice of the root of unity (.

Proposition 6.4.1 (Elmanto et. al) For any v > 1 The unit of
the adjunction induces an equivalence of spectra

MGL/£°[B7:}] — MGLE /£

where MGL® := ¢ _*(MGL) the étale localization of
algebraic cobordism.
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6.4 /-adic case

Theorem 6.4.2 There is an isomorphism of graded abelian
groups induced by étale realization:

(@ MGLP4(k) ® ZE)

p,q

IIZ

D (MUy)?
P
where [ is the collection of ;. for all v > 1.

More generally, this isomorphism works for all Landweber exact
theories, especially the symmetric products of MGL. We thus can
prove a complete version of our main theorem and this yields:

(Tore0(Skll/P))(K)) ) [87] = (m.S), [B71]
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7. Future work




7.1 Even filtrations

Theorem 7.1.1 (Pstragowski, Gheorghe et. al)

SH(C)) ~ Syn/y ~ Mody

where Syn represents the category of synthetic spectra, which
is a way to encode the Adams-Novikov spectral sequence
using a one-parameter deformation of 5.

Since MGL is cellular, this equivalence reveals that over C, the
behavior of MGL-modules should be purely topological under
some mild finiteness conditions. In fact, the étale case suggests that
more should be true over arbitrary algebraic closed fields, though
we don’t know how to precisely state that, since cellularity is not
closed under infinite limits, in particular, completions.
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7.2 p-adic case

The étale realization is not well defined in p-adic case since it is not
Al-invariant. There are some possible ways to solve this.

1. Use a non-Al-invariant motivic homotopy theory, e.g.
logarithmic motivic homotopy or P!-invariant spectra.

2. Use an intermediate topology to realize, e.g. tame site. This
approach needs us to find an alternative to Elmanto et. al’s
construction, especially an alternative of Bott element.
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Thank you for listening!
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