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1. Motivation



1.1 Adams-Novikov spectral sequences
Classical Adams spectral sequence takes the ordinary homology 

mod 𝑝 as an input and approximates the 𝑝-stem of the stable 

homotopy groups of spheres.

We can generalize this to any ring spectrum 𝐸, inducing 𝐸-Adams 

spectral sequences. Suppose we want to approximate [𝕊, 𝕊], we may 

try to make use of 𝐸∗(𝕊) → 𝐸∗(𝕊) over 𝐸∗(𝐸) the Hopf algebroid 

of dual 𝐸-Steenrod operations.

If we view it as a base change 𝕊 → 𝐸, then we can recover the 

module information over 𝕊 by totalization of the cobar resolution

𝕊 → 𝐸 ⇉ 𝐸 ∧ 𝐸 ⇶ …

This is a cosimplicial spectrum in Mod𝕊, and carries a filtration by 

finite totalizations. The 𝐸-Adams spectral sequence is the spectral 

sequence associated to this filtration.
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1.1 Adams-Novikov spectral sequences
Specialize to 𝐸 = MU, the complex cobordism spectrum, we get a 

spectral sequence which converges faster to the full stable 

homotopy group of spheres. We call this the Adams-Novikov 

spectral sequence, which plays an important role in chromatic 

homotopy theory.

𝐸𝑠,𝑡
1 (𝐴𝑁) ≔ 𝜋−𝑠−𝑡gr𝑠Tot⋆(MU∧∗+1) ⇒ 𝜋−𝑠−𝑡(𝕊)

We want to extend this result, by considering a cobordism theory 

of “motivic nature” and defining filtration on it. We hope it also 

converges to certain homotopy groups of connective spectra, or 

best, of motivic spheres.
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1.2 Main result
The stable homotopy group of motivic spheres has its own interest 

due to rich algebraic and arithmetic information contained in it, e.g. 

the Milnor-Witt 𝐾-theory. Inspired by topological setting, we can 

compare it with stable homotopy group of spheres in the form of 

spectral sequences.

Theorem 1.2.1 The Adams-Novikov spectral sequence 

𝐸𝑠,𝑡
𝑟 (𝐴𝑁) and the motivic Atiyah-Hirzebruch spectral 

sequence

𝐸𝑝,𝑞
1 (𝐴𝐻) = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘)

are isomorphic by

⊕𝑝,𝑞 𝛾𝑝,𝑞
𝑟 : (⊕𝑝,𝑞 𝐸𝑝,𝑞

𝑟 (𝐴𝐻), 𝑑𝑟) → (⊕𝑝,𝑞 𝐸3𝑝+𝑞,2𝑝
2𝑟+1 (𝐴𝑁), 𝑑2𝑟+1).
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1.3 Remark on ∞-category

Axiom 1.3.1 There are model independent objects called ∞-

categories with following features:

1. It has objects and morphisms between objects.

2. It contains 𝑛-isomorphisms expressing the equality of (𝑛 −
1)-isomorphisms, where 1-isomorphims are those between 

objects.

3. 𝑛-isomorphisms can compositite, forming a generalization 

of commutative triangles and commutative squares.

4. Every 1-category gives rise to an ∞-category.

5. There are ∞-categories Cat∞ and An, called the ∞-

category of small ∞-categories and small animae, where an 

anima can be understood as the homotopy type of a space.

6. Cat∞ has ∅ as initial object and [0] = {∗} as terminal 

object. It has products, pullbacks and pushouts.
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1.3 Remark on ∞-category

7. There’re categorical constructions like subcategory and 

Dwyer-Kan localization with respect to certain collection of 

morphisms.
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2. Motivic
homotopy theory



2.1 Motivic space
Motivic homotopy theory is the homotopy theory of smooth 

schemes where 𝔸1 is the interval object. In order to get an analog 

of smooth manifolds, we consider the presheaves of animae on 

𝒮︀m𝑘 and localize them. We use Nisnevich topology because it gives 

us a descent of algebraic 𝐾-theory (s. Filtration).

Definition 2.1.1 The unstable motivic category ℋ︀(𝑘) is the 

localization of 𝒫︀(𝒮︀m𝑘) under the following morphisms:

1. (𝔸1-invariance) 𝑋 × 𝔸1
𝑘 → 𝑋;

2. よ(𝑈)∐
よ(𝑈×𝑋𝑉 )よ(𝑉 ) →よ(𝑋) for any Nisnevich 

square {𝑈 → 𝑋,𝑉 → 𝑋};

3. the unique map ∅ →よ(∅).

where よ : 𝒮︀m𝑆 → 𝒫︀(𝒮︀m𝑘) is the Yoneda embedding functor. 

This gives us a localization functor 𝐿mot : 𝒫︀(𝒮︀m𝑘) → ℋ︀(𝑘).
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2.1 Motivic space

Proposition 2.1.2 There is a closed symmetric monoidal 

structure on ℋ︀(𝑘)∗ given by the localization of the section-

wise smash product, where ℋ︀(𝑘)∗ is the category of pointed 

motivic spaces.
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2.2 ∞-category and stabilization
Just like motivic spaces resemble the classical homotopy category 

of spaces, the stable motivic category is a generalization of 

topological spectra.

In the setting of higher algebra, there is a canonical way to stabilize 

an ∞-category, by considering the spectrum objects Sp(𝒞︀) of the 

category 𝒞︀.

Definition 2.2.1 The ∞-category of spectrum objects Sp(𝒞︀) 
for 𝒞︀ a small ∞-category is the sequential limit

Sp(𝒞︀) ≔ lim(… →
Ω

𝒞︀∗ →
Ω

𝒞︀∗ →
Ω

𝒞︀∗)

in the ∞-category Cat∞ of small ∞-categories.
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2.2 ∞-category and stabilization
We have two options: invert 𝕊1 = Σ(∗ ∐ ∗) or invert ℙ1 ≃ 𝕊1 ∧
𝔾𝑚. The later turns out to be a better candidate.

Definition 2.2.2 The stable motivic category 𝒮︀ℋ︀(𝑘) is the 

colimit of the following sequence:

ℋ︀(𝑘)∗ →
ℙ1∧−

ℋ︀(𝑘)∗ →
ℙ1∧−

ℋ︀(𝑘)∗ →
ℙ1∧−

…

together with a symmetric monoidal functor Σ∞
ℙ1 : ℋ︀(𝑘)∗ →

𝒮︀ℋ︀(𝑘) which sends ℙ1 to an invertible object. Moreover, 

𝒮︀ℋ︀(𝑘) carries a canonical symmetric monoidal structure.

We have the following universal property of 𝒮︀ℋ︀(𝑘).
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2.2 ∞-category and stabilization

Proposition 2.2.3 (Robalo) The stable motivic category 

𝒮︀ℋ︀(𝑘) is indeed stable. Moreover, let 𝒞︀ be a pointed 

presentable symmetric monoidal ∞-category, the composition 

with stabilization

Fun⊗,𝐿(𝒮︀ℋ︀(𝑘), 𝒞︀) → Fun⊗(ℋ︀(𝑘)∗, 𝒞︀), 𝐹 ↦ 𝐹 ∘ Σ∞
ℙ1

is fully faithful with essential image consisting of those 

symmetric monoidal functors 𝐹 : ℋ︀(𝑘)∗ → 𝒞︀ which are ℙ1-

stable, i.e. the homotopy cofiber of 𝐹(Spec 𝑘) → 𝐹(ℙ1) 

induced from Spec 𝑘 →
∞

ℙ1 is ⊗-invertible.
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2.3 Homotopy sheaf and connectivity

Definition 2.3.1 Let 𝐸 ∈ 𝒮︀ℋ︀(𝑘), we shall denote 𝕊𝑖,𝑗 ≔
(𝕊1)∧𝑖−𝑗 ∧ 𝔾∧𝑗

𝑚  to be the motivic (𝑖, 𝑗)-sphere. The (𝑖, 𝑗)-th 

homotopy sheaf 𝜋𝑖,𝑗(𝐸) of 𝐸 is the sheafification of the 

presheaf

𝑋 ∈ 𝒮︀m𝑘 ↦ [Σ∞
ℙ1𝑋+, 𝐸 ∧ 𝕊−𝑖,−𝑗]

𝒮︀ℋ︀(𝑘)

where [𝑋, 𝑌 ] is the 0-th truncation of the mapping space, i.e. 

the set of morphisms in the homotopy category.

We may discuss the connectivity with respect to this bigraded 

homotopy sheaf.
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2.3 Homotopy sheaf and connectivity

Definition 2.3.2 The homotopy 𝑡-structure on 𝒮︀ℋ︀(𝑘) is 

given by

𝒮︀ℋ︀(𝑘)≥0 = {𝐸 ∈ 𝒮︀ℋ︀(𝑘) : 𝜋𝑖,𝑗(𝐸) = 0, ∀𝑖 − 𝑗 < 0}

𝒮︀ℋ︀(𝑘)≤0 = {𝐸 ∈ 𝒮︀ℋ︀(𝑘) : 𝜋𝑖,𝑗(𝐸) = 0, ∀𝑖 − 𝑗 > 0}.

Theorem 2.3.3 The homotopy 𝑡-structure is indeed a 𝑡-
structure. And all truncation functors are symmetric monoidal 

with respect to the smash product on 𝒮︀ℋ︀(𝑘).
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3. Algebraic cobordism



3.1 Vector bundles and Thom spaces
For a vector bundle ℰ︀ → 𝑋 over smooth scheme 𝑋 ∈ 𝒮︀m𝑘, we can 

define the Thom space Th(ℰ︀) ≔ ℰ︀/(ℰ︀ − 𝑋) ∈ ShvNis(𝒮︀m𝑘)∗ 

pointed at the image of ℰ︀ − 𝑋, where 𝑋 is embedded as the zero 

section. Suppose we have ℰ︀1 → 𝑋1 and ℰ︀2 → 𝑋2, then

Th(ℰ︀1 × ℰ︀2 → 𝑋1 × 𝑋2) = Th(ℰ︀1) ∧ Th(ℰ︀2).

Definition 3.1.1 Let

BGL𝑛 = Gr𝑛 ≔ lim
𝑘

Gr𝑛(𝔸𝑛+𝑘)

be the Grassmannian of 𝑛-dimensional affine subspaces and 

𝛾𝑛 the tautological bundle on it. The product 𝔸1 × 𝛾𝑛 →
BGL𝑛 is classified by pullback of the canonical map BGL𝑛 →
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3.1 Vector bundles and Thom spaces

BGL𝑛+1 and 𝛾𝑛+1, this induces a bundle map 𝔸1 × 𝛾𝑛 →
𝛾𝑛+1, and a structure map

Th(𝔸1) ∧ Th(𝛾𝑛) ≃ ℙ1 ∧ Th(𝛾𝑛) → Th(𝛾𝑛+1).

The algebraic cobordism spectrum MGL𝑘 ∈ 𝒮︀ℋ︀(𝑘) is defined 

to be

MGL𝑘 ≔ colim𝑛Σ−𝑛
ℙ1 Σ∞

ℙ1Th(𝛾𝑛).

Definition 3.1.2 the algebraic 𝐾-theory spectrum KGL ∈
𝒮︀ℋ︀(𝑘) as

KGL ≔ Σ∞
ℙ1𝐿mot(ℤ × BGL)
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3.1 Vector bundles and Thom spaces

where BGL is the sequential limit of

… ↪︎ BGL𝑛 ↪︎ BGL𝑛+1 ↪︎ …

and the structure map is given by

𝛽 : ℙ1 ∧ 𝐿mot(ℤ × BGL) → 𝐿mot(ℤ × BGL)

representing the Bott element in 𝐾0(ℙ1 ∧ 𝐿mot(ℤ × BGL)).

Cheni Yuki Yang Slice, décale and realize, motivically 2026-01-29 18 / 57



3.2 Functorial treatment

Theorem 3.2.1 (Bachmann-Hoyois) There is a colimit-

preserving functor 𝑀𝑘 : 𝒫︀Σ((𝒮︀m𝑘)/𝒮︀ℋ︀) → 𝒮︀ℋ︀(𝑘), called 

the motivic Thom spectrum functor, which sends a spherical 

presheaf into a Thom spectrum.

Let Vect(𝑋) be the symmetric monoidal ∞-category of vector 

bundles over 𝑋 ∈ 𝒮︀m𝑘, with symmetric monoidal structure given 

by direct sums. We have a symmetric monoidal functor

Vect(𝑋) → Sph(𝑋), 𝜉 ↦ Σ∞
ℙ1Th(𝜉)

natural in 𝑋, where Sph(𝑋) is the anima spanned by invertible 

objects in 𝒮︀ℋ︀(𝑋)≃. And this gives us a natural transformation

Vect → Sph : Span → CAlg(An).
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3.2 Functorial treatment
Since Sph(𝑋) is an anima, by taking the group completion of 

Vect(𝑋), we have the factorization

𝑗

Vect

Vectgp

Sph

𝐾

Definition 3.2.2 The above natural transformation 𝑗 : 𝐾 →
Sph is called the motivic 𝐽 -homomorphism.

Proposition 3.2.3 Let 𝑒 : 𝐾⚬ ↪︎ 𝐾 be the injection of rank 0 

part of algebraic 𝐾-theory. The bundle 𝛾 : BGL → 𝐾⚬ 
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3.2 Functorial treatment

representing 𝔸1-localization of tautological bundle induces an 

equivalence in 𝒮︀ℋ︀(𝑘):

MGL𝑘 = 𝑀𝑘(𝑗 ∘ 𝑒 ∘ 𝛾) ≃ 𝑀𝑘(𝑗 ∘ 𝑒).

Corollary 3.2.3.1 The algebraic cobordism spectrum is 

equipped with an ℰ︀∞-ring structure.

Proof. Since 𝑀𝑘 is colimit preserving, it sends objects in 

CAlg(𝒫︀Σ(𝒮︀m𝑘)/𝒮︀ℋ︀≃) to objects in CAlg(𝒮︀ℋ︀(𝑘)). It remains to 

check that the motivic 𝐽 -homomorphism on zeroth summand is a 

commutative algebra object in 𝒫︀Σ(𝒮︀m𝑘)/𝒮︀ℋ︀≃ , which is clear. □
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4. Filtrations



4.1 Slice filtrations

Definition 4.1.1 

1. The full subcategory of 𝒮︀ℋ︀(𝑆) generated by spectra 

Σ𝑛
𝕊1Σ∞

ℙ1𝑋+, 𝑛 ∈ ℤ under colimits, where 𝑋 ∈ 𝒮︀m𝑆  a 

smooth scheme, is called the category of effective motivic 

spectra, denoted by 𝒮︀ℋ︀eff(𝑆).
2. For any 𝑘 ∈ ℤ, the category of 𝑘-effective spectra 

𝒮︀ℋ︀eff(𝑆)(𝑘) is generated by

Σ𝑛
𝕊1Σ∞

ℙ1((ℙ1)∧𝑘 ∧ 𝑋)
+
, 𝑛 ∈ ℤ.

where 𝑋 ∈ 𝒮︀m𝑆  a smooth scheme.

Note that 𝒮︀ℋ︀eff(𝑆) is stable and presentable. By the usual adjoint 

functor theorem we have:
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4.1 Slice filtrations

Proposition 4.1.2 The inclusion functor 𝜄𝑘 : 𝒮︀ℋ︀eff(𝑆)(𝑘) →
𝒮︀ℋ︀(𝑆) admits a right adjoint 𝑟𝑘 : 𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀eff(𝑆)(𝑘).

For a motivic spectrum 𝐸, we set 𝐸𝑘 ≔ 𝜄𝑘(𝑟𝑘(𝐸)), called the 𝑘-

effective cover of 𝐸. We then have a filtration

… → 𝐸𝑘+1 → 𝐸𝑘 → 𝐸𝑘−1 → …

called the slice filtration of motivic spectra. The graded piece is 

called slice.

The effective spectra category expresses certain connectivity with 

respect to 𝔾𝑚, but not 𝕊1. We thus can also consider an variant.
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4.1 Slice filtrations

Definition 4.1.3 

1. The full subcategory in 𝒮︀ℋ︀(𝑆) generated under colimits 

by spectra Σ𝑛
𝕊1Σ∞

ℙ1𝑋+, 𝑛 ≥ 0 is called the category of very 

effective spectra, denoted by 𝒮︀ℋ︀veff(𝑆).
2. For any 𝑘 ∈ ℤ, the category of 𝑘-very effective spectra is 

generated by

Σ𝑛
𝕊1Σ∞

ℙ1((ℙ1)∧𝑘 ∧ 𝑋)
+
, 𝑛 ≥ 0.

where 𝑋 ∈ 𝒮︀m𝑆  a smooth scheme.

the inclusion ̃𝜄𝑘 : 𝒮︀ℋ︀veff(𝑆)(𝑘) → 𝒮︀ℋ︀(𝑆) we have a right adjoint 

𝑟̃𝑘 : 𝒮︀ℋ︀(𝑆) → 𝒮︀ℋ︀veff(𝑆)(𝑘), and this induces a tower of very 

effective cover of spectra:
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4.1 Slice filtrations

… → 𝐸𝑘+1 ≔ 𝜄̃𝑘+1𝑟̃𝑘+1𝐸 → 𝐸𝑘 → 𝐸𝑘−1 → …

called the generalized slice filtration of motivic spectra. The graded 

piece is called the generalized slice.

Remark

Voevodsky made several conjectures about slices. one of them 

conjectures that gr0(KGL) ≃ 𝑀ℤ representing the motivic 

cohomology.
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4.1 Slice filtrations
The calculation of slices of MGL𝑘 is very important for our 

purpose.

Theorem 4.1.4 (Hopkins-Morel-Hoyois) Let 𝑘 be a field of 

exponential characteristic 𝑒 and MGL ∈ 𝒮︀ℋ︀(𝑘) the algebraic 

cobordism spectrum. The canonical map

𝑓 : MGL/(𝑏1, 𝑏2,…)[1/𝑒] → 𝑀ℤ[1/𝑒]

is an equivalence.

Corollary 4.1.4.1 Let 𝑆 be an essentially smooth scheme over 

a base field 𝑘. The slices of MGL∗ in 𝒮︀ℋ︀(𝑆) are given by

gr𝑡MGL∗ ≃ Σ2𝑡,𝑡𝐻𝐿𝑡[1/𝑒]
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4.1 Slice filtrations

where 𝐿𝑡 is the 𝑡-th graded piece of 𝐿 viewed as an Adams 

graded MU∗-module. In particular, for 𝑘 a field of 

characteristic 0, the zeroth slice of MGL is 𝑀ℤ.

Corollary 4.1.4.2 For any Landweber exact spectrum 𝐸 ∈
𝒮︀ℋ︀(𝑘) (especially MGL𝑘), the slice filtration and generalized 

slice filtration of 𝐸 agree.
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4.2 Degression: Beilinson 𝑡-structure and Décalage

Theorem 4.2.1 (Beilinson, Ariotta, Antieau) Let 𝒞︀ be a stable 

∞-category with sequential limits. There is a canonical 

categorical equivalence of complete filtrations and coherent 

cochain complexes:

Fil𝑐(𝒞︀) ≃ Ch∙(𝒞︀)

which sends a complete filtration F⋆ to a cochain complex 𝐶 

with 𝐶𝑛 ≃ gr𝑛F⋆[𝑛].

Definition 4.2.2 Let (𝒞︀≥0, 𝒞︀≤0) be a 𝑡-structure on a stable ∞
-category 𝒞︀ with sequential limits. Consider the pointwise 𝑡-
structure on Ch∙(𝒞︀), by the above categorical equivalence we 
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4.2 Degression: Beilinson 𝑡-structure and Décalage

can thus define a 𝑡-structure (Fil𝑐(𝒞︀)Б
≥0, Fil𝑐(𝒞︀)Б

≤0) on 

Fil𝑐(𝒞︀), which is called the Beilinson 𝑡-structure on Fil𝑐(𝒞︀).

For incomplete filtrations F⋆ ∈ Fil(𝒞︀), we can glue the trivial 𝑡-
structure on 𝒞︀ and Beilinson 𝑡-structure on Fil𝑐(𝒞︀) to get the 

Beilinson 𝑡-structure on Fil(𝒞︀).

Definition 4.2.3 Let F⋆ be a filtration. Consider the 

Whitehead tower with respect to the Beilinson 𝑡-structure on 

Fil(𝒞︀)

… → 𝜏Б
≥𝑛+1F⋆ → 𝜏Б

≥𝑛F⋆ → 𝜏Б
≥𝑛−1F⋆ → …

By taking the realization, we get a new filtered object of 𝒞︀
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4.2 Degression: Beilinson 𝑡-structure and Décalage

… → |𝜏Б
≥𝑛+1F⋆| → |𝜏Б

≥𝑛F⋆| → |𝜏Б
≥𝑛−1F⋆| → …

This is called the décalage of F⋆, and we denote Dec∙(F⋆). If 
F⋆ is a filtration on 𝑋, Since we have natural maps 𝜏Б

≥𝑛F⋆ →
F⋆, we then have a map

|𝜏Б
≥𝑛F⋆| → |F⋆| → 𝑋

hence Dec∙(F⋆) is a filtration on 𝑋.

Example. (Berthelot-Ogus, Bhatt-Morrow-Scholze)

Let 𝑀∙ ∈ Ch(Mod𝐴) and 𝑓 ∈ 𝐴 such that 𝑀  is 𝑓-torsion free. 

Consider the 𝑓-adic filtration F★ on 𝑀∙, we define a new complex 

by

(𝜂𝑓𝑀)𝑖 = {𝑥 ∈ F𝑖𝑀 𝑖 : 𝑑𝑖(𝑥) ∈ F𝑖+1𝑀 𝑖+1}
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4.2 Degression: Beilinson 𝑡-structure and Décalage
and this construction descends to 𝐿𝜂𝑓 : 𝐷(𝐴) → 𝐷(𝐴). In fact, 

𝐿𝜂𝑓𝑀  can viewed as Dec0(F★𝑀).

Now we study how to build spectral sequences out of filtrations.

A filtration F⋆ gives rise to a coherent cochain complex

… → gr−𝑠−1F⋆[−𝑠 − 1] → gr−𝑠F⋆[−𝑠] → gr−𝑠+1F⋆[−𝑠 + 1] → …

Apply the 𝜋𝑡 functor and after suitable suspension yields a 

coherent cochain complex in the heart 𝒞︀♡ of 𝒞︀

… → 𝜋𝑠+𝑡+1gr−𝑠−1F⋆ → 𝜋𝑠+𝑡gr−𝑠F⋆ → 𝜋𝑠+𝑡−1gr−𝑠+1F⋆ → …

Definition 4.2.4 The 𝐸𝑟-page of the spectral sequence 

associated to a filtration F⋆ is defined inductively to be
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4.2 Degression: Beilinson 𝑡-structure and Décalage

𝐸𝑠,𝑡
1 (F⋆) ≔ 𝜋𝑠+𝑡gr−𝑠F⋆

𝐸𝑠,𝑡
𝑟+1(F⋆) ≔ 𝐸−𝑡,𝑠+2𝑡

𝑟 (Dec(F⋆))

together with the differential:

𝑑𝑠,𝑡
1 : 𝜋𝑠+𝑡gr−𝑠F∗ → 𝜋𝑠+𝑡−1gr−𝑠+1F∗

𝑑𝑠,𝑡
𝑟+1 ≔ 𝑑−𝑡,𝑠+2𝑡

𝑟 .
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4.2 Degression: Beilinson 𝑡-structure and Décalage
Visualization. (Antieau, 2024)
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5. Realizations



5.1 Betti realizations
Realization functors are colimit preserving exact functors that send 

motivic spectra into a simpler stable ∞-categories, e.g. 𝒮︀ℋ︀.

Let 𝑘 be a field of characteristic zero equipped with an embedding 

𝑘 ↪︎ ℂ.

1. We lift the functor (−)(ℂ) : 𝒮︀m𝑘 → An, which associates a 

smooth scheme 𝑆 with the homotopy type of the space of its 

complex points 𝑆(ℂ) under the analytic topology, to a colimit 

preserving functor Reℂ : 𝒫︀(𝒮︀m𝑘) → An.

2. We can show this functor preserves Nisnevich excision and 𝔸1-

invariance, thus Reℂ : 𝒫︀(𝒮︀m𝑘) → An factors through ℋ︀(𝑘) of 

motivic spaces. The same construction works for pointed spaces 

ℋ︀(𝑘)∗.
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5.1 Betti realizations
3. The final step is to post-compose the stabilization functor and 

check whether Σ∞ ∘ Reℂ : ℋ︀(𝑘)∗ → 𝒮︀ℋ︀ is symmetric 

monoidal and inverts ℙ1, hence this functor factors through 

𝒮︀ℋ︀(𝑘) and induces a functor Reℂ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀, which is 

well-defined, symmetric monoidal, preserves colimits and finite 

products. We call this functor complex Betti realization.

4. The set ℂ-points of a ℝ-scheme naturally carries a ℤ/2-action 

by complex conjugation, hence similarly, the functor (−)(ℂ) 
pre-composing with base change induces a functor Reℝ :
ℋ︀(𝑘) → 𝒫︀(𝒪︀ℤ/2), where 𝒪︀ℤ/2 is the orbit category of ℤ/2 and 

induces a functor Reℝ : 𝒮︀ℋ︀(𝑘) → 𝒮︀ℋ︀𝐶2
, which is well-defined, 

symmetric monoidal, preserves colimits and finite products. We 

call this functor real Betti realization.
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5.1 Betti realizations
Notice Reℂ preserves the ℰ︀𝑛-ring structure on 𝒮︀ℋ︀(𝑘) and 𝒮︀ℋ︀ for 

1 ≤ 𝑛 ≤ ∞, this is a direct consequence of the fact that Reℂ is lax 

symmetric monoidal. Moreover we have

Proposition 5.1.1 The restriction of Reℂ : 𝒮︀ℋ︀veff(𝑘)(𝑚) →
𝒮︀ℋ︀≥2𝑚 is well-defined, where 𝒮︀ℋ︀≥2𝑚 is the subcategory of 

2𝑚-connected spectra.

Cheni Yuki Yang Slice, décale and realize, motivically 2026-01-29 38 / 57



5.2 Étale realization
Let 𝑘 be a field of characteristic 𝑝. Let ℓ ≠ 𝑝 be a prime.

Let An∧ be the category of profinite spaces, it is naturally identified 

with pro-objects of presheaves of Fin finite sets via the limit 

functor. For any shape 𝑆 ∈ Pro(An), we can associate a profinite 

completion 𝑆∧ ∈ An∧ to it. Our target of étale realization functor 

will be the 𝕊2-stabilization of An∧
∗ , viewing 𝕊2 as a constant sheaf, 

to which we denote 𝒮︀ℋ︀∧,𝕊2
.

We localize Pro(An) with respect to all pro-morphisms that induce 

isomorphisms on objectwise continuous cohomology with ℤ/ℓ-

coefficients. We denote it as Pro(An)ℓ.

There is a well-defined exact functor Reét : 𝒮︀ℋ︀(𝑘) →
Pro(An)ℓ → 𝒮︀ℋ︀∧,𝕊2

. We call this functor étale realization.
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5.3 Realization of Thom spectra

Theorem 5.3.1 Let MU denote the complex cobordism 

spectrum in 𝒮︀ℋ︀. Then there is an isomorphism of ℰ︀∞ rings: 

ReℂMGL ≃ MU, where MU is equipped with the ℰ︀∞ 

structure as a Thom spectrum.

The proof idea is essentially to identify the Betti realization of 

motivic Thom spectrum functor with the topological Thom 

spectrum functor and the following calculation:

Recall MU is identified with 𝑀(BU →
𝑗

𝒮︀ℋ︀≃) and MGL =

𝑀𝑘(𝐾⚬ →
𝑗

𝒮︀ℋ︀≃), so we reduce to check Reℂ(𝐾⚬) ≃ BU. To see 

this, one compute
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5.3 Realization of Thom spectra
Reℂ(𝐾⚬) ≃ Reℂ(BGL) = Reℂ(colimΔop(GL → GL × GL → …))

≃
1

B (Reℂ(GL)) = B(⋃
𝑛

GL𝑛(ℂ)) ≃
2

B(⋃𝑈𝑛(ℂ)) = BU

where 1 is true since Reℂ preserves colimit and 2 comes from the 

deformation retract 𝑈𝑛(ℂ) ↪︎ GL𝑛(ℂ).

Corollary 5.3.1.1 Let MU∗ be the Postnikov filtration on MU 

and MGL∗ the slice filtration on MGL ∈ 𝒮︀ℋ︀(𝑘), then 

Reℂ(MGL𝑛) is (2𝑛 − 1)-connected, and we have an 

isomorphism in 𝒮︀ℋ︀:

𝜏≥2𝑛Reℂ(MGL𝑛) ≅ MU2𝑛
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6. Spectral sequences



6.1 Atiyah-Hirzebruch spectral sequences
1. Let 𝐸 ∈ 𝒮︀ℋ︀(𝑘) and 𝐸∗ the slice filtration on 𝐸. Then Section 

4.2 yields a spectral sequence related to 𝐸∗, we call this the 

motivic slice spectral sequence associated to 𝐸∗.

2. We are primarily interested in the global section of this slice 

spectral sequence. This is also what Levine is referring to as 

motivic Atiyah-Hirzebruch spectral sequence:

𝐸𝑠,𝑡
1 (𝐴𝐻)(𝐸) ≔ 𝜋𝑠+𝑡,0(gr𝑠𝐸∗)(Spec 𝑘) ⇒ 𝜋𝑠+𝑡,0(𝐸)(Spec 𝑘)

3. Our goal is to identify this spectral sequence with something out 

of topological nature. We shall do it in characteristic 0 and 𝑝-

cases, where the first case can be divided into global and ℓ-local 

pictures.
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6.2 Characteristic 0 case

Lemma 6.2.1 The Betti realization functor gives an 

isomorphism

Re(gr[𝑎,𝑏)𝕊⋆
𝑘) ≅ gr[2𝑎,2𝑏)Dec∙(MU∧∗+1)

Proof. We first notice the Postnikov tower on MU can be applied 

termwise on cosimplicial spectrum 𝑠 ↦ MU∧𝑠+1 and incudes a 

filtration on it. (note here this filtration is indeed complete)

Since Reℂ is an exact symmetric monoidal functor, it preserves 

cofiber sequences and we have an isomorphism

Reℂ(colim𝑠≤𝑁Tot𝑠gr[𝑎,𝑏)MGL∧∗+1) ≅ colim𝑠≤𝑁Tot𝑠𝜏Б
≥2𝑎𝜏Б

≤2𝑏MU∧∗+1.
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6.2 Characteristic 0 case
We still need to calculate the left side to get rid of the colimit. We 

observe this follows from the descendability of gr[𝑎,𝑏)𝕊∗
𝑘 →

gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1: Indeed, descendability implies an equivalence

gr[𝑎,𝑏)𝕊∗
𝑘 ≃ Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1

in 𝒮︀ℋ︀(𝑘) = Mod𝕊𝑘
. Now take 𝑁 = ∞ and by definition of 

décalage functor, we have the desired result. □
Therefore, we reduce to show:

Lemma 6.2.2 Let 𝑎 ≤ 𝑏 ≤ 𝑠 + 1, denote 𝜄∗𝑠 : Δ≤𝑠 ↪︎ Δ the 

inclusion of simplicial sets and (𝜄𝑠)∗ its right adjoint. Then 

gr[𝑎,𝑏)𝕊∗
𝑘 → gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1 is ℰ︀∞-descendable.
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6.2 Characteristic 0 case
Proof. The unit map c𝕊𝑘 → MGL∧∗+1 induces a map 𝕊𝑘 →
holimΔ≤𝑠(𝜄𝑠)∗MGL∧∗+1 since holim(𝜄𝑠)∗𝕊𝑘 ≅ 𝕊𝑘. On the other 

hand, there is an equivalence

holimΔ≤𝑠(𝜄𝑠)∗MGL∧∗+1 ≃ Tot𝑠(𝜄𝑠)∗MGL∧∗+1

by definition. We now show gr[𝑎,𝑏)𝕊∗
𝑘 ≅ Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1, 

which, in light of equivalent definitions of descendability, suffices 

to construct a retraction from Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1 to 

gr[𝑎,𝑏)𝕊∗
𝑘.

We show cofib(gr[𝑎,𝑏)𝕊∗
𝑘 → Tot𝑠gr[𝑎,𝑏)(𝜄𝑠)∗MGL∧∗+1) = 0. For 

this, notice that by Hopkins-Morel-Hoyois gr0𝕊∗
𝑘 ≅ gr0MGL∗ ≃

𝑀ℤ. Let MGL be the cofiber of 𝕊𝑘 → MGL, then it follows that 

MGL1 = MGL, thus (MGL∧𝑠+1)
𝑠+1

= MGL∧𝑠+1, and we have

(Ω𝑠MGL∧𝑠+1)
𝑠+1

≅ Ω𝑠MGL∧𝑠+1.
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6.2 Characteristic 0 case
Hence for 𝑎 ≤ 𝑏 ≤ 𝑠 + 1

gr[𝑎,𝑏)(Ω𝑠MGL∧𝑠+1)
⋆
= 0.

The following fiber sequence is well known [HA, §4.7.2]:

Ω𝑠MGL∧𝑠+1 → Tot𝑠MGL∧∗+1 → Tot𝑠−1MGL∧∗+1

and after truncation to (𝜄𝑠)∗MGL∧∗+1 we have a cofiber sequence

𝕊𝑘 ≃ Tot𝑠−1(𝜄𝑠)∗MGL∧∗+1 → Tot𝑠(𝜄𝑠)∗MGL∧∗+1 → Ω𝑠MGL∧𝑠+1.

Then we conclude by taking the associated graded pieces. □
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6.2 Characteristic 0 case
Proof of main theorem. Since 𝑎 and 𝑏 in the lemma are arbitrary, we 

have an isomorphism of the slice spectral sequences associated to 

two filtrations Re(𝕊⋆
𝑘) and Dec∙(MU∧∗+1), where all the odd 

homotopy groups of MU∧𝑠+1 vanish.

On the other hand, the realization functor induces an isomorphism

𝜋𝑛,0(gr[𝑎,𝑏)𝕊⋆
𝑘)(𝑘) ≅ 𝜋𝑛(Re(gr[𝑎,𝑏)𝕊⋆

𝑘))

whence the first spectral sequence is just 𝐸(𝐴𝐻) by definition. 

This, after a change of 𝐸2-spectral sequence to 𝐸1-spectral 

sequence, yields

𝐸𝑝,𝑞
𝑟 (𝐴𝐻) ≅ 𝐸2𝑝,𝑞−𝑝

2𝑟−1 (Dec(MU∧∗+1)) ≅ 𝐸2𝑝,𝑞−𝑝
2𝑟 (Dec(MU∧∗)).

Now by décalage:

𝐸2𝑝,𝑞−𝑝
2𝑟 (Dec(MU∧∗)) ≅ 𝐸3𝑝+𝑞,−2𝑝

2𝑟+1 (MU∧∗) = 𝐸3𝑝+𝑞,2𝑝
2𝑟+1 (𝐴𝑁).
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6.3 Completion and localization
We can construct the motivic counterpart of the Brown-Peterson 

spectra, a direct summand of MU(ℓ), the Bousfield localization of 

MU. As this is a Landweber exact theory, we have

gr0𝕊∗
𝑘 ⊗ ℤ(ℓ) ≃ gr0MGL∗ ⊗ ℤ(ℓ) ≃ gr0BP(𝑙)

mot.

Apply the descendability argument to 𝕊∗
𝑘 ⊗ ℤ(ℓ) → BP(ℓ)

mot we can 

establish an isomorphism of spectral sequences:

𝐸𝑠,𝑡
2 (𝐴𝑁)ℓ = Ext𝑠,𝑡BP(ℓ)

∗ (BP(ℓ))(BP(ℓ)
∗ , BP(ℓ)

∗ ) ⟹ 𝜋𝑡−𝑠𝕊 ⊗ ℤ(ℓ)

and

𝐸𝑝,𝑞
1 (𝐴𝐻)ℓ = 𝜋−𝑝−𝑞,0(gr−𝑞𝕊⋆

𝑘)(𝑘) ⊗ ℤ(ℓ) ⟹ 𝜋−𝑝−𝑞,0(𝕊𝑘)(𝑘) ⊗ ℤ(ℓ).

Cheni Yuki Yang Slice, décale and realize, motivically 2026-01-29 49 / 57



6.3 Completion and localization
Similarly the completion with respect primes away from 

characteristic is well defined, for example

MGL∧
ℓ ≔ lim𝑛MGL/ℓ𝑛.

In characteristic zero this is not well behaved under realizations 

because it is an infinite limit.
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6.3 Completion and localization
Completion can also happen for other elements in ring spectra.

Definition 6.3.1 

1. The algebraic Hopf map is the class 𝜂 ∈ 𝜋1,1(𝕊𝑘) induced 

by the coordinate map

𝔸2
𝑆 − {0} → ℙ1

𝑆 , (𝑥, 𝑦) ↦ [𝑥 : 𝑦].
2. The limit of the sequential tower

… → 𝐸 ∧ cofib(𝜂𝑛+1) → 𝐸 ∧ cofib(𝜂𝑛) → 𝐸 ∧ cofib(𝜂𝑛−1) → …

is called the 𝜂-completion 𝐸∧
𝜂  of 𝐸.
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6.4 ℓ-adic case
We can define an étale version of stable motivic homotopy 

category, of which we denote 𝒮︀ℋ︀ét(𝑆). This category turns out to 

be a non-full localization of 𝒮︀ℋ︀(𝑆). The identity functor id :
𝒮︀m𝑆 → 𝒮︀m𝑆  induces a geometric morphism of ∞-topoi

𝜀∗ : Shv∧
ét(𝒮︀m𝑆) → ShvNis(𝒮︀m𝑆)

with a left adjoint 𝜀∗. This adjunction descends to

𝜀∗ : 𝒮︀ℋ︀(𝑆) ⇄ 𝒮︀ℋ︀ét(𝑆) : 𝜀∗

Since 𝐻0,1(Spec 𝑘; ℤ/𝑛) ≃ 𝜇𝑛(𝑘). Let 𝜁 be a primitive 𝑛-th roots 

of unity in 𝑘, and let 𝛽𝑛 be the associated element of 

𝐻0,1(Spec 𝑘; ℤ/𝑛). the spectral sequence

𝐻𝑝+2𝑡,𝑞+𝑡(𝑘; ℤ/𝑛) ⊗ 𝐿𝑡[1/𝑝] ⟹ MGL𝑝,𝑞(𝑘)[1/𝑝]
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6.4 ℓ-adic case
sends 𝛽𝑛 to an element in MGL0,1(𝑘; ℤ/𝑛), which we call motivic 

Bott element. The element 𝛽ℓ𝑣  actually lives in (MGL/ℓ𝑣)0,𝑁(𝑘) 
for some 𝑁 , and the formal inversion with respect to 𝛽ℓ𝑣  is 

independent on the choice of the root of unity 𝜁.

Proposition 6.4.1 (Elmanto et. al) For any 𝑣 ≥ 1 The unit of 

the adjunction induces an equivalence of spectra

MGL/ℓ𝑣[𝛽−1
ℓ𝑣 ] →≃ MGLét/ℓ𝑣

where MGLét ≔ 𝜀∗𝜀∗(MGL) the étale localization of 

algebraic cobordism.
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6.4 ℓ-adic case

Theorem 6.4.2 There is an isomorphism of graded abelian 

groups induced by étale realization:

(⨁
𝑝,𝑞

MGL𝑝,𝑞(𝑘) ⊗ ℤℓ)[𝛽−1] ≅ ⨁
𝑝

(MU∧
ℓ )

𝑝[𝛽−1]

where 𝛽 is the collection of 𝛽ℓ𝑣  for all 𝑣 ≥ 1.

More generally, this isomorphism works for all Landweber exact 

theories, especially the symmetric products of MGL. We thus can 

prove a complete version of our main theorem and this yields:

(𝜋𝑠+𝑡,0(𝕊𝑘[1/𝑝])(𝑘))
∧
ℓ
[𝛽−1] ≅ (𝜋𝑠+𝑡𝕊)

∧
ℓ
[𝛽−1]
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7. Future work



7.1 Even filtrations

Theorem 7.1.1 (Pstrągowski, Gheorghe et. al)

𝒮︀ℋ︀cell(ℂ)∧𝑝 ≃ Syn∧
𝑝 ≃ ModΓ∗𝟙

where Syn represents the category of synthetic spectra, which 

is a way to encode the Adams-Novikov spectral sequence 

using a one-parameter deformation of 𝒮︀ℋ︀.

Since MGL is cellular, this equivalence reveals that over ℂ, the 

behavior of MGL-modules should be purely topological under 

some mild finiteness conditions. In fact, the étale case suggests that 

more should be true over arbitrary algebraic closed fields, though 

we don’t know how to precisely state that, since cellularity is not 

closed under infinite limits, in particular, completions.
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7.2 𝑝-adic case
The étale realization is not well defined in 𝑝-adic case since it is not 

𝔸1-invariant. There are some possible ways to solve this.

1. Use a non-𝔸1-invariant motivic homotopy theory, e.g. 

logarithmic motivic homotopy or ℙ1-invariant spectra.

2. Use an intermediate topology to realize, e.g. tame site. This 

approach needs us to find an alternative to Elmanto et. al’s 

construction, especially an alternative of Bott element.
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Thank you for listening!
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